【題目】如圖,將△ABC的一角折疊,使點(diǎn)C落在△ABC內(nèi)一點(diǎn)

1)若∠1=40°,∠2=30°,求∠C的度數(shù);(2)試通過(guò)第(1)問(wèn),直接寫(xiě)出∠1、∠2、∠C三者之間的關(guān)系.

【答案】1;(22C=1+∠2.

【解析】

由折疊關(guān)系可得到∠C=C′,C′DE=CDE,C′ED=CED,在再根據(jù)平角的性質(zhì),得到

C′DC+C′EC的值,在根據(jù)四邊形的內(nèi)角和為360°,即可求出∠C的度數(shù);根據(jù)(1)問(wèn)可知,∠C′DC+C′EC=360(1+2),2C==360°-(∠C′DC+C′EC),聯(lián)立上式即可得到∠1、∠2、∠C三者之間的關(guān)系.

解:(1) ∵△CDE是由△CDE折疊而成,

∴∠C=∠C′,∠CDE=∠CDE,∠CED=∠CED,

又∠1+∠CDC=180,∠2+∠CEC=180

∴∠CDC+∠CEC=360(∠1+∠2)=290

又∵四邊形CDCE的內(nèi)角和為360,

∴∠C′+∠C=70,

∴∠C=35.

2)根據(jù)(1)問(wèn)可知,

C′DC+C′EC=360(1+2),

又∵四邊形CDCE的內(nèi)角和為360

2C==360°-(∠C′DC+C′EC),

聯(lián)立上式即可得

2C=1+∠2,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC的頂點(diǎn)坐標(biāo)是A(﹣7,1),B(1,1),C(1,7).線(xiàn)段DE的端點(diǎn)坐標(biāo)是D(7,﹣1),E(﹣1,﹣7).

(1)試說(shuō)明如何平移線(xiàn)段AC,使其與線(xiàn)段ED重合;
(2)將△ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn),使AC的對(duì)應(yīng)邊為DE,請(qǐng)直接寫(xiě)出點(diǎn)B的對(duì)應(yīng)點(diǎn)F的坐標(biāo);
(3)畫(huà)出(2)中的△DEF,并和△ABC同時(shí)繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,畫(huà)出旋轉(zhuǎn)后的圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,B90°,ACB30°,AB2,CD3,AD5

1)求證:ACCD;

2)求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)y=x2﹣(2m+1)x+2m不經(jīng)過(guò)第三象限,且當(dāng)x>2時(shí),函數(shù)值y隨x的增大而增大,則實(shí)數(shù)m的取值范圍是( )
A.0≤m≤1.5
B.m≥1.5
C.0≤m≤1
D.0<m≤1.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“五一勞動(dòng)節(jié)大酬賓!”,某商場(chǎng)設(shè)計(jì)的促銷(xiāo)活動(dòng)如下:在一個(gè)不透明的箱子里放有4個(gè)相同的小球,球上分別標(biāo)有“0元”、“10元”、“20元”和“50元”的字樣.規(guī)定:在本商場(chǎng)同一日內(nèi),顧客每消費(fèi)滿(mǎn)300元,就可以在箱子里先后摸出兩個(gè)球(第一次摸出后不放回).商場(chǎng)根據(jù)兩小球所標(biāo)金額的和返還相等價(jià)格的購(gòu)物券,購(gòu)物券可以在本商場(chǎng)消費(fèi).某顧客剛好消費(fèi)300元.
(1)該顧客至多可得到元購(gòu)物券;
(2)請(qǐng)你用畫(huà)樹(shù)狀圖或列表的方法,求出該顧客所獲得購(gòu)物券的金額不低于50元的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB=AC=5,cos∠ABC=0.6,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn),得到△A1B1C.

(1)如圖1,當(dāng)點(diǎn)B1在線(xiàn)段BA延長(zhǎng)線(xiàn)上時(shí).①求證:BB1∥CA1;②求△AB1C的面積;
(2)如圖2,點(diǎn)E是BC邊的中點(diǎn),點(diǎn)F為線(xiàn)段AB上的動(dòng)點(diǎn),在△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)過(guò)程中,點(diǎn)F的對(duì)應(yīng)點(diǎn)是F1 , 求線(xiàn)段EF1長(zhǎng)度的最大值與最小值的差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,MN,EF是兩面互相平行的鏡面,根據(jù)鏡面反射規(guī)律,若一束光線(xiàn)AB照射到鏡面MN,反射光線(xiàn)為BC,則一定有∠1=2.試根據(jù)這一規(guī)律:

(1)利用直尺和量角器作出光線(xiàn)BC經(jīng)鏡面EF反射后的反射光線(xiàn)CD;

(2)試判斷ABCD的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,A,B兩點(diǎn)分別表示兩幢大樓所在的位置,直線(xiàn)a表示輸水總管道,直線(xiàn)b表示輸煤氣總管道.現(xiàn)要在這兩根總管道上分別設(shè)一個(gè)連接點(diǎn),安裝分管道將水和煤氣輸送到A,B兩幢大樓,要求使鋪設(shè)至兩幢大樓的輸水分管道和輸煤氣分管道的用料最短.圖中,點(diǎn)A'是點(diǎn)A關(guān)于直線(xiàn)b的對(duì)稱(chēng)點(diǎn),A'B分別交直線(xiàn)b,a于點(diǎn)C,D;點(diǎn)B'是點(diǎn)B關(guān)于直線(xiàn)a的對(duì)稱(chēng)點(diǎn),B'A分別交直線(xiàn)b,a于點(diǎn)E,F.則符合要求的輸水和輸煤氣分管道的連接點(diǎn)依次是

A. F和C B. F和E C. D和C D. D和E

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明到某服裝商場(chǎng)進(jìn)行社會(huì)調(diào)查,了解到該商場(chǎng)為了激勵(lì)營(yíng)業(yè)員的工作積極性,實(shí)行“月總收入=基本工資+計(jì)件獎(jiǎng)金”的方法,并獲得如下信息:

營(yíng)業(yè)員A:月銷(xiāo)售件數(shù)200件,月總收入3400元;

營(yíng)業(yè)員B:月銷(xiāo)售件數(shù)300件,月總收入3700元;

假設(shè)營(yíng)業(yè)員的月基本工資為x元,銷(xiāo)售每件服裝獎(jiǎng)動(dòng)y元.

(1)求x和y的值;

(2)商場(chǎng)為了多銷(xiāo)售服裝,對(duì)顧客推薦一種購(gòu)買(mǎi)方式:如果購(gòu)買(mǎi)甲服裝3件,乙服裝2件,丙服袋1件共需390元:如果購(gòu)買(mǎi)甲服裝1件,乙服裝2件,丙服裝3件共需370元.某顧客想購(gòu)買(mǎi)甲、乙、丙服裝各一件共需多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案