【題目】如圖,點(diǎn)CD分別在扇形AOB的半徑OA、OB的延長(zhǎng)線上,且OA=3,AC=3-3,CDAB,并與弧AB相交于點(diǎn)M、N

(1)求線段OD的長(zhǎng);

(2)sin∠C,求弦MN的長(zhǎng);

(3)(2)的條件下,求優(yōu)弧MEN的長(zhǎng)度.

【答案】(1)線段OD的長(zhǎng)為

(2)弦MN的長(zhǎng)為3;

(3)優(yōu)弧MEN的長(zhǎng)度.

【解析】分析:(1)由OA=OB得:OA=OB,根據(jù)CD∥AB可知,∠OAB=∠C, ∠D=∠OBA,推出∠C=∠D,最后求出OD的長(zhǎng);(2)過(guò)O作OF⊥CD,連接OM,由垂徑定理可知MF=MN,再根據(jù)sin∠C=可求出OF的長(zhǎng),利用勾股定理即可求出ME的長(zhǎng),進(jìn)而求出答案.(3)由OM=ON=MN得到△OMN是等邊三角形,利用弧長(zhǎng)公式求解.

本題解析:(1)∵OA=OB ∴OA=OB

∵CD∥AB ∴∠OAB=∠C, ∠D=∠OBA

∴∠C=∠D ∴OD=OC=OA+AC=

(2)過(guò)O作OF⊥MN于點(diǎn)F,連結(jié)OM。

,OC= ∴OF=∵OM=3 根據(jù)勾股定理得MF=

由垂徑定理得MN=3, (3)由(2)可得△OMN是等邊三角形,∴∠MON=60°

∴優(yōu)弧MEN的長(zhǎng)度=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一元二次方程4x2+1=4x的根的情況是(
A.只有一個(gè)實(shí)數(shù)根
B.有兩個(gè)相等的實(shí)數(shù)根
C.有兩個(gè)不相等的實(shí)數(shù)根
D.沒(méi)有實(shí)數(shù)根

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,C=90°,ABC=60°,BD平分∠ABC , 若AD=6,則CD是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角△ABC中,∠ACB=90°,∠B=30°,CD⊥AB于D,CE是△ABC的角平分線.
(1)求∠DCE的度數(shù).
(2)若∠CEF=135°,求證:EF∥BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列計(jì)算正確的是(
A.3xy﹣2yx=xy
B.5y﹣3y=2
C.7a+a=7a2
D.3a+2b=5ab

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,分別以點(diǎn)A和B為圓心,以相同的長(zhǎng)(大于AB)為半徑作弧,兩弧相交于點(diǎn)M和N,作直線MN交AB于點(diǎn)D,交BC于點(diǎn)E,連接CD,下列結(jié)論錯(cuò)誤的是(  )

A.AD=BD
B.BD=CD
C.∠A=∠BED
D.∠ECD=∠EDC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于點(diǎn)E,AD=8cm,BC=4cm,AB=5cm.從初始時(shí)刻開始,動(dòng)點(diǎn)P,Q 分別從點(diǎn)A,B同時(shí)出發(fā),運(yùn)動(dòng)速度均為1cm/s,動(dòng)點(diǎn)P沿A﹣B﹣﹣C﹣﹣E的方向運(yùn)動(dòng),到點(diǎn)E停止;動(dòng)點(diǎn)Q沿B﹣﹣C﹣﹣E﹣﹣D的方向運(yùn)動(dòng),到點(diǎn)D停止,設(shè)運(yùn)動(dòng)時(shí)間為xs,△PAQ的面積為ycm2,(這里規(guī)定:線段是面積為0的三角形)

解答下列問(wèn)題:

(1)當(dāng)x=2s時(shí),y= cm2;當(dāng)x=s時(shí),y= cm2

(2)當(dāng)5≤x≤14 時(shí),求y與x之間的函數(shù)關(guān)系式.

(3)當(dāng)動(dòng)點(diǎn)P在線段BC上運(yùn)動(dòng)時(shí),求出時(shí)x的值.

(4)直接寫出在整個(gè)運(yùn)動(dòng)過(guò)程中,使PQ與四邊形ABCE的對(duì)角線平行的所有x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一元二次方程x223x化成ax2+bx+c0a0)的形式后,a,b,c的值分別為( 。

A. 02,﹣3B. 12,﹣3C. 1,﹣2,3D. 1,3,﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,矩形ABCD的AB邊在x軸上,且AB=3,AD=2,經(jīng)過(guò)點(diǎn)C的直線y=x﹣2與x軸、y軸分別交于點(diǎn)E,F(xiàn).

(1)求矩形ABCD的頂點(diǎn)A,B,C,D的坐標(biāo);
(2)求證:△OEF≌△BEC;
(3)P為直線y=x﹣2上一點(diǎn),若SPOE=5,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案