【題目】如圖,數(shù)學(xué)興趣小組想測(cè)量電線桿AB的高度,他們發(fā)現(xiàn)電線桿的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4米,BC=10米,CD與地面成30°角,且此時(shí)測(cè)得1米桿的影長(zhǎng)為2米,則電線桿的高度約為________米(結(jié)果保留根號(hào))

【答案】7+

【解析】

先根據(jù)CD的長(zhǎng)以及坡角求出落在斜坡上的影長(zhǎng)在地面上的實(shí)際長(zhǎng)度,即可知AB的總影長(zhǎng),然后根據(jù)1m桿的影子長(zhǎng)為2m,求解電線桿的高度.

DE⊥BCE. 則電線桿的高度分3部分進(jìn)行求解。

BC對(duì)應(yīng)的電線桿的高度:根據(jù)同一時(shí)刻物高與影長(zhǎng)成比例,得10÷2=5;

Rt△CDE,根據(jù)30°所對(duì)的直角邊是斜邊的一半,DE=2.再根據(jù)勾股定理,CE=2.

因?yàn)?/span>DE⊥BC,則DE對(duì)應(yīng)的電線桿高度和DE相等,CE對(duì)應(yīng)的電線桿高度同樣根據(jù):同一時(shí)刻物高與影長(zhǎng)成比例,

2÷2=.

故電線桿的高度是5+2+=7+.

故答案為:7+.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分10分)星光中學(xué)課外活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形生物苗圃園.其中一邊靠墻,另外三邊用長(zhǎng)為30的籬笆圍成.已知墻長(zhǎng)為18(如圖所示),設(shè)這個(gè)苗圃園垂直于墻的一邊的長(zhǎng)為x.

1)若平行于墻的一邊的長(zhǎng)為y米,直接寫出yx之間的函數(shù)關(guān)系式及其自變量x的取值范圍;

2)垂直于墻的一邊的長(zhǎng)為多少米時(shí),這個(gè)苗圃園的面積最大,并求出這個(gè)最大值;

3)當(dāng)這個(gè)苗圃園的面積不小于88平方米時(shí),試結(jié)合函數(shù)圖像,直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年暑假,小麗爸爸的同事送給她爸爸一張北京故宮的門票,她和哥哥兩人都很想去參觀,可門票只有一張.讀九年級(jí)的哥哥想了一個(gè)辦法,他拿了八張撲克牌,將數(shù)字為1,2,3,5的四張牌給小麗,將數(shù)字為4,6,7,8的四張牌留給自己,并按如下游戲規(guī)則進(jìn)行:小利哥哥從各自的四張牌中隨機(jī)抽出一張,然后將抽出的兩張撲克牌上的數(shù)字相加,如果和為偶數(shù),和小麗去;如果和為奇數(shù),則哥哥去.

(1)請(qǐng)用畫樹狀圖或列表的方法求小麗去北京故宮參觀的概率;

(2)哥哥設(shè)計(jì)的游戲規(guī)則公平嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正六邊形ABCDEF中,P、Q兩點(diǎn)分別為△ACF、△CEF的內(nèi)心.若AF=2,則PQ的長(zhǎng)度為何?( 。

A. 1 B. 2 C. 2﹣2 D. 4﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BC為⊙O的直徑,A為⊙O上的點(diǎn),以BC、AB為邊作ABCD,OAD于點(diǎn)E,連結(jié)BE,點(diǎn)P為過點(diǎn)B的⊙O的切線上一點(diǎn),連結(jié)PE,且滿足∠PEA=ABE.

(1)求證:PB=PE;

(2)若sinP=, 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在矩形ABCD中,AC、BD相交于點(diǎn)O,OEBCE,連接DEOC于點(diǎn)F,作FGBCG.

(1)說明點(diǎn)G是線段BC的一個(gè)三等分點(diǎn);

(2)請(qǐng)你依照上面的畫法,在原圖上畫出BC的一個(gè)四等分點(diǎn)(保留作圖痕跡,不必證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=﹣x2+2x+3與x軸交于A,B兩點(diǎn),點(diǎn)A在點(diǎn)B的左側(cè).

(1)求A,B兩點(diǎn)的坐標(biāo)和此拋物線的對(duì)稱軸;

(2)設(shè)此拋物線的頂點(diǎn)為C,點(diǎn)D與點(diǎn)C關(guān)于x軸對(duì)稱,求四邊形ACBD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形和四邊形是兩個(gè)全等的矩形,其中交于點(diǎn),、交于點(diǎn)

(1)判斷四邊形的形狀、并說明理由.

(2)若矩形的長(zhǎng)是,寬是,求四邊形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長(zhǎng)為6的菱形ABCD中,動(dòng)點(diǎn)M從點(diǎn)A出發(fā),沿A→B→C向終點(diǎn)C運(yùn)動(dòng),連接DMAC于點(diǎn)N

1)如圖1,當(dāng)點(diǎn)MAB邊上時(shí),連接BN

試說明:;

∠ABC=60°AM=4,求點(diǎn)MAD的距離.

2)如圖2,若∠ABC=90°,記點(diǎn)M運(yùn)動(dòng)所經(jīng)過的路程為x6≤x≤12).試問:x為何值時(shí),△ADN為等腰三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案