如圖,尺規(guī)作圖作∠AOB的平分線的方法如下:以O(shè)為圓心,任意長為半徑畫弧交OA、OB于點C、D,再分別以點C、D為圓心,大于0.5CD的長為半徑畫弧,兩弧交于點P,作射線OP.由作法得△OCP≌△ODP從而得兩角相等的根據(jù)是( 。
A.SASB.SSSC.AASD.ASA

∵以O(shè)為圓心,任意長為半徑畫弧交OA,OB于C,D,即OC=OD;
以點C,D為圓心,以大于
1
2
CD長為半徑畫弧,兩弧交于點P,即CP=DP;
∴在△OCP和△ODP中
OC=OD
OP=OP
CP=DP
,
∴△OCP≌△ODP(SSS).
故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,△ABC≌△DEF,點A與D,B與E分別是對應(yīng)頂點,若∠A=∠D=90°,AB=3,DG=1,AG=2,則梯形CFDG的面積是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,點B、E、F、C在同一直線上.已知∠A=∠D,∠B=∠C,要使△ABF≌△DCE,需要補(bǔ)充的一個條件是______(寫出一個即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在△ABC和△DEF中,∠A=∠D,∠C=∠F,要使△ABC≌△DEF,還需增加的條件是( 。
A.AB=EFB.AC=DFC.∠B=∠ED.CB=DE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,△ABC為等邊三角形,面積為S.D1,E1,F(xiàn)1分別是△ABC三邊上的點,且AD1=BE1=CF1=
1
2
AB,連接D1E1,E1F1,F(xiàn)1D1,可得△D1E1F1
(1)用S表示△AD1F1的面積S1=
1
4
,△D1E1F1的面積S1′=
1
4
;
(2)當(dāng)D2,E2,F(xiàn)2分別是等邊△ABC三邊上的點,且AD2=BE2=CF2=
1
3
AB時,如圖②,求△AD2F2的面積S2和△D2E2F2的面積S2′;
(3)按照上述思路探索下去,當(dāng)Dn,En,F(xiàn)n分別是等邊△ABC三邊上的點,且ADn=BEn=CFn=
1
n+1
AB時(n為正整數(shù)),求△ADnFn的面積Sn,△DnEnFn的面積Sn′.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

在△ABC和△A′B′C′中,AB=A′B′,AC=A′C′,要證明△ABC≌△A′B′C′,須添加一個條件,這個條件可以是①∠A=∠A′、②∠B=∠B′、③BC=B′C′中的( 。
A.①或②或③B.①或②C.①或③D.②或③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,小明和小華兩家位于A、B兩處隔河相望,要測量兩家之間的距離,小明的設(shè)計方案如下:從B點出發(fā)沿河岸畫一條射線BF,在BF上截取BC=CD,過點D作DEAB.使E、C、A在同一條直線上,則DE的長就是A、B兩點之間的距離.
(1)請你說明他這個設(shè)計的原理;
(2)你能設(shè)計出更好的方案嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,△ABD和△CBD都是等邊三角形,AC與BD交于點O,圖中全等三角形的對數(shù)有( 。
A.2對B.4對C.6對D.8對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,點D,E在△ABC的BC邊上,且BD=CE,∠BAD=∠CAE,要推理得出△ABE≌△ACD,可以補(bǔ)充的一個條件是______(不添加輔助線,寫出一個即可).

查看答案和解析>>

同步練習(xí)冊答案