【題目】△ABC中,∠CAB=∠CBA=50°,O為△ABC內(nèi)一點(diǎn),∠OAB=10°,∠OBC=20°,則∠OCA的度數(shù)為(

A.55°
B.60°
C.70°
D.80°

【答案】C
【解析】解:如圖,作CD⊥AB于D,延長BO交CD于P,連接PA,

∵∠CAB=∠CBA=50°,
∴AC=BC,
∴AD=BD,
∵∠CAB=∠CBA=50°,
∴∠ACB=80°,
∵∠ABC=∠ACB=50°,∠OBC=20°,
∴∠CBP=∠OBC=20°=∠CAP,
∠PAO=∠CAB﹣∠CAP﹣∠OAB=50°﹣20°﹣10°=20°=∠CAP,
∠POA=∠OBA+∠OAB=10°+50°﹣20°=40°=∠ACD,
∵在△CAP和△OAP中,

∴△CAP≌△OAP,
∴AC=OA,
∴∠ACO=∠AOC,
∴∠OCA= (180°﹣∠CAO)= [180°﹣(∠CAB﹣∠OAB)= (180°﹣40°)=70°,
故選:C.
【考點(diǎn)精析】關(guān)于本題考查的三角形的內(nèi)角和外角,需要了解三角形的三個(gè)內(nèi)角中,只可能有一個(gè)內(nèi)角是直角或鈍角;直角三角形的兩個(gè)銳角互余;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知m是一元二次方程x2+x5的實(shí)數(shù)根,求代數(shù)式(2m1)(2m+1)﹣mm3)﹣7的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 一個(gè)數(shù)的平方等于它的本身的數(shù)是____________

平方根等于它的本身的數(shù)是______________

算術(shù)平方根等于它的本身的數(shù)是__________

立方根等于它的本身的數(shù)是______________

大于0且小于π的整數(shù)是________________

滿足<x <的整數(shù)x_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正六邊形A1B1C1D1E1F1的邊長為2,正六邊形A2B2C2D2E2F2的外接圓與正六邊形A1B1C1D1E1F1的各邊相切,正六邊形A3B3C3D3E3F3的外接圓與正六邊形A2B2C2D2E2F2的各邊相切,…按這樣的規(guī)律進(jìn)行下去,A10B10C10D10E10F10的邊長為(  )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列兩個(gè)圖形不一定相似的是(  )

A.兩個(gè)正方形B.兩個(gè)等腰直角三角形

C.兩個(gè)等邊三角形D.兩個(gè)等腰三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知三角形兩邊長是方程x2﹣5x+6=0的兩個(gè)根,則三角形的第三邊c的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E,F(xiàn)在BC上,BE=CF,∠A=∠D,∠B=∠C,AF與DE交于點(diǎn)O.

(1)求證:AB=DC;
(2)試判斷△OEF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC(BC>AC),ACB=90°,點(diǎn)DAB邊上,DEAC于點(diǎn)E.設(shè)點(diǎn)F在線段EC上,點(diǎn)G在射線CB上,以F,CG為頂點(diǎn)的三角形與EDC有一個(gè)銳角相等,FGCD于點(diǎn)P,問:線段CP可能是CFG的高線還是中線?或兩者都有可能?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC中,AB=6,點(diǎn)P是AB邊上的任意一點(diǎn)(點(diǎn)P不與點(diǎn)A、點(diǎn)B重合),過點(diǎn)P作PD⊥AB,交直線BC于點(diǎn)D,作PE⊥AC,垂足為點(diǎn)F.

(1)求∠APE的度數(shù);
(2)連接DE,當(dāng)△PDE為等邊三角形時(shí),求BP的長.

查看答案和解析>>

同步練習(xí)冊答案