【題目】為了了解某區(qū)的綠化進程,小明同學查詢了園林綠化政務網(wǎng),根據(jù)網(wǎng)站發(fā)布的近幾年該城市城市綠化資源情況的相關數(shù)據(jù),繪制了如下統(tǒng)計圖(不完整)
請根據(jù)以上信息解答下列問題:
求2018年該市人均公共綠地面積是多少平方米(精確到?
補全條形統(tǒng)計圖;
小明同學還了解到自己身邊的許多同學都樹立起了綠色文明理念,從自身做起,多種樹,為提高人均公共綠地面積做貢獻,他對所在班級的多名同學2019年參與植樹的情況做了調查,并根據(jù)調查情況繪制出如下統(tǒng)計表:
種樹棵數(shù)(棵) | ||||||
人數(shù) |
如果按照小明的統(tǒng)計數(shù)據(jù),請你通過計算估計,他所在學校的名同學在2019年共植樹多少棵?
【答案】(1)①15.0平方米;②見解析;(2)675棵
【解析】
(1)①根據(jù)條形圖可得2017年該市人均公共綠地面積是14.5,根據(jù)折線圖可得出2018年該城市人均公共綠地面積在2017年的基礎上增長3.4%,進而求出即可;
②利用①中所求,畫出條形圖即可;
(2)根據(jù)40名同學2019年參與植樹的情況,求出平均值,即可估計300名同學在2019年共植樹棵數(shù),
解:(1)①14.5×(1+3.4%)≈15.0,
答:2018年該市人均公共綠地面積是15.0平方米;
②補全條形統(tǒng)計圖如下:
(2)每人平均植樹=2.25(課),
則估計他所在學校的300名同學在2015年共植樹300×2.25=675棵.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC,∠ACB=90°,BC=3,AC=4,小紅按如下步驟作圖:
①分別以A、C為圓心,以大于AC的長為半徑在AC兩邊作弧,交于兩點M、N;
②連接MN,分別交AB、AC于點D、O;
③過C作CE∥AB交MN于點E,連接AE、CD.
則四邊形ADCE的周長為( 。
A. 10 B. 20 C. 12 D. 24
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:中,,求證:,下面寫出可運用反證法證明這個命題的四個步驟:
①∴,這與三角形內角和為矛盾,②因此假設不成立.∴,③假設在中,,④由,得,即.這四個步驟正確的順序應是( )
A.③④②①B.③④①②C.①②③④D.④③①②
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某小龍蝦養(yǎng)殖大戶為了更好地發(fā)揮技術優(yōu)勢,一次性收購了20000kg小龍蝦,計劃養(yǎng)殖一段時間后再出售.已知每天放養(yǎng)的費用相同,放養(yǎng)10天的總成本為30.4萬元;放養(yǎng)20天的總成本為30.8萬元(總成本=放養(yǎng)總費用+收購成本).
(1)設每天的放養(yǎng)費用是a萬元,收購成本為b萬元,求a和b的值;
(2)設這批小龍蝦放養(yǎng)t天后的質量為m(kg),銷售單價為y元/kg.根據(jù)以往經(jīng)驗可知:m與t的函數(shù)關系為;y與t的函數(shù)關系如圖所示.
①分別求出當0≤t≤50和50<t≤100時,y與t的函數(shù)關系式;
②設將這批小龍蝦放養(yǎng)t天后一次性出售所得利潤為W元,求當t為何值時,W最大?并求出最大值.(利潤=銷售總額﹣總成本)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系內,已知點A的坐標為(-6,0),直線l:y=kx+b不經(jīng)過第四象限,且與x軸的夾角為30°,點P為直線l上的一個動點,若點P到點A的最短距離是2,則b的值為( 。
A. 或B. C. 2D. 2或10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一輛客車從甲地出發(fā)前往乙地,平均速度v(千米/小時)與所用時間t(小時)的函數(shù)關系如圖所示,其中60≤v≤120.
(1)直接寫出v與t的函數(shù)關系式;
(2)若一輛貨車同時從乙地出發(fā)前往甲地,客車比貨車平均每小時多行駛20千米,3小時后兩車相遇.
①求兩車的平均速度;
②甲、乙兩地間有兩個加油站A、B,它們相距200千米,當客車進入B加油站時,貨車恰好進入A加油站(兩車加油的時間忽略不計),求甲地與B加油站的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=50°,連接AC,BD
交于點M.
①的值為 ;②∠AMB的度數(shù)為 °;
(2)如圖2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,連接AC交BD的延長線于點M.求的值及∠AMB的度數(shù);
(3)在(2)的條件下,將△OCD繞點O在平面內旋轉,AC,BD所在直線交于點M.若OD=,OB=,請直接寫出當點C與點M重合時AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是半圓O的直徑,點P是BA延長線上一點,PC是⊙O的切線,切點為C,過點B作BD⊥PC交PC的延長線于點D,連接BC.求證:
(1)∠PBC=∠CBD;
(2)=ABBD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com