【題目】每個小方格都是邊長為1個單位長度的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,
①寫出A、B、C的坐標.
②以原點O為對稱中心,畫出△ABC關(guān)于原點O對稱的△A1B1C1,并寫出A1、B1、C1的坐標.
【答案】①A(1,﹣4),B(5,﹣4),C(4,﹣1);②畫圖見解析,A1(﹣1,4),B1(﹣5,4),C1(﹣4,1).
【解析】試題分析:關(guān)于原點對稱的點的坐標特點:兩個點關(guān)于原點對稱時,它們的坐標符號相反.
①根據(jù)各點所在的象限,對應(yīng)的橫坐標、縱坐標,分別寫出點的坐標;
②首先根據(jù)關(guān)于原點對稱的點的坐標特點:兩個點關(guān)于原點對稱時,它們的坐標符號相反得到A、B、C的對稱點坐標,再順次連接即可.
解:①A(1,﹣4),B(5,﹣4),C(4,﹣1);
②A1(﹣1,4),B1(﹣5,4),C1(﹣4,1),如圖所示:
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小明想測量斜坡旁一棵垂直于地面的樹的高度,他們先在點處測得樹頂的仰角為,然后在坡頂測得樹頂的仰角為,已知斜坡的長度為,斜坡頂點到地面的垂直高度,則樹的高度是( )
A. 20B. 30C. 30D. 40
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】長城公司為希望小學捐贈甲、乙兩種品牌的體育器材,甲品牌有A、B、C三種型號,乙品牌有D、E兩種型號,現(xiàn)要從甲、乙兩種品牌的器材中各選購一種型號進行捐贈.
(1)下列事件是不可能事件的是
A.選購甲品牌的B型號;
B.選購甲品牌的C型號和乙品牌的D型號;
C.既選購甲品牌也選購乙品牌;
D.只選購乙品牌的E型號.
(2)用列表法或樹狀圖法,寫出所有的選購方案,若每種方案被選中的可能性相同,求A型號的器材被選中的概率?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,將腰CD以D為中心逆時針旋轉(zhuǎn)90°至ED,連AE、CE,則△ADE的面積是( 。
A. 1 B. 2 C. 3 D. 不能確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在⊙O中,BC=2,AB=AC,點D為AC上的動點,且cosB=.
(1)求AB的長度;
(2)求ADAE的值;
(3)過A點作AH⊥BD,求證:BH=CD+DH.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點A(1,0),已知拋物線y=x2+mx﹣2m(m是常數(shù)),頂點為P.
(1)當拋物線經(jīng)過點A時.
①求頂點P的坐標;
②設(shè)直線l:y=3x+1與拋物線交于B、C兩點,拋物線上的點M的橫坐標為n(﹣1≤n≤3),過點M作x軸的垂線,與直線l交于點Q,若MQ=d,當d隨n的增大而減少時,求n的取值范圍.
(2)無論m取何值,該拋物線都經(jīng)過定點H,當∠AHP=45°時,求拋物線的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,菱形ABCD中,AB=5,∠ABC=60°,∠EAF=60°,∠EAF的兩邊分別交BC、CD于E、F.
(1)如圖1所示,當點E、F分別在邊BC、CD上時,求CE+CF的值;
(2)如圖2所示,當點、分別在、的延長線時,請從,兩題中任選一題作答,我選______題.
題:則的值是________.
題:則與的關(guān)系是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,AC、BD是對角線,將△DCB繞著點D順時針旋轉(zhuǎn)45°得到△DGH,HG交AB于點E,連接DE交AC于點F,連接FG.則下列結(jié)論:①四邊形AEGF是菱形;②△HED的面積是1﹣;③∠AFG=135°;④BC+FG=.其中正確的結(jié)論是_____.(填入正確的序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com