(2008•沈陽)如圖所示,在平面直角坐標系中,矩形ABOC的邊BO在x軸的負半軸上,邊OC在y軸的正半軸上,且AB=1,OB=,矩形ABOC繞點O按順時針方向旋轉(zhuǎn)60°后得到矩形EFOD.點A的對應(yīng)點為點E,點B的對應(yīng)點為點F,點C的對應(yīng)點為點D,拋物線y=ax2+bx+c過點A,E,D.
(1)判斷點E是否在y軸上,并說明理由;
(2)求拋物線的函數(shù)表達式;
(3)在x軸的上方是否存在點P,點Q,使以點O,B,P,Q為頂點的平行四邊形的面積是矩形ABOC面積的2倍,且點P在拋物線上?若存在,請求出點P,點Q的坐標;若不存在,請說明理由.

【答案】分析:(1)可連接OA,通過證∠AOE=60°,即與旋轉(zhuǎn)角相同來得出OE在y軸上的結(jié)論.
(2)已知了AB,OB的長即可求出A的坐標,在直角三角形OEF中,可用勾股定理求出OE的長,也就能求得E點的坐標,要想得出拋物線的解析式還少D點的坐標,可過D作x軸的垂線,通過構(gòu)建直角三角形,根據(jù)OD的長和∠DOx的正弦和余弦值來求出D的坐標.
求出A、E、D三點坐標后即可用待定系數(shù)法求出拋物線的解析式.
(3)可先求出矩形的面積,進而可得出平行四邊形OBPQ的面積.由于平行四邊形中OB邊的長是定值,因此可根據(jù)平行四邊形的面積求出P點的縱坐標(由于P點在x軸上方,因此P的縱坐標為正數(shù)),然后將P點的縱坐標代入拋物線中可求出P點的坐標.求出P點的坐標后,將P點分別向左、向右平移OB個單位即可得出Q點的坐標,由此可得出符合條件的兩個P點坐標和四個Q點坐標.
解答:解:(1)點E在y軸上
理由如下:
連接AO,如圖所示,在Rt△ABO中,∵AB=1,BO=,
∴AO=2∴sin∠AOB=,∴∠AOB=30°
由題意可知:∠AOE=60°∴∠BOE=∠AOB+∠AOE=30°+60°=90°
∵點B在x軸上,∴點E在y軸上.

(2)過點D作DM⊥x軸于點M,
∵OD=1,∠DOM=30°
∴在Rt△DOM中,DM=,OM=
∵點D在第一象限,
∴點D的坐標為
由(1)知EO=AO=2,點E在y軸的正半軸上
∴點E的坐標為(0,2)
∴點A的坐標為(-,1)
∵拋物線y=ax2+bx+c經(jīng)過點E,
∴c=2
由題意,將A(-,1),D(,)代入y=ax2+bx+2中,

解得
∴所求拋物線表達式為:y=-x2-x+2

(3)存在符合條件的點P,點Q.
理由如下:∵矩形ABOC的面積=AB•BO=
∴以O(shè),B,P,Q為頂點的平行四邊形面積為
由題意可知OB為此平行四邊形一邊,
又∵OB=
∴OB邊上的高為2
依題意設(shè)點P的坐標為(m,2)
∵點P在拋物線y=-x2-x+2上
∴-m2-m+2=2
解得,m1=0,m2=-
∴P1(0,2),P2(-,2)
∵以O(shè),B,P,Q為頂點的四邊形是平行四邊形,
∴PQ∥OB,PQ=OB=,
∴當點P1的坐標為(0,2)時,點Q的坐標分別為Q1(-,2),Q2,2);
當點P2的坐標為(-,2)時,點Q的坐標分別為Q3(-,2),Q4,2).
點評:本題著重考查了待定系數(shù)法求二次函數(shù)解析式、圖形旋轉(zhuǎn)變換、平行四邊形的性質(zhì)等知識點,綜合性強,能力要求較高.考查學生數(shù)形結(jié)合的數(shù)學思想方法.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2008•沈陽)如圖,AB是⊙O的一條弦,OD⊥AB,垂足為C,交⊙O于點D,點E在⊙O上.
(1)若∠AOD=52°,求∠DEB的度數(shù);(2)若OC=3,AB=8,求⊙O直徑的長.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年全國中考數(shù)學試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2008•沈陽)如圖所示,在平面直角坐標系中,矩形ABOC的邊BO在x軸的負半軸上,邊OC在y軸的正半軸上,且AB=1,OB=,矩形ABOC繞點O按順時針方向旋轉(zhuǎn)60°后得到矩形EFOD.點A的對應(yīng)點為點E,點B的對應(yīng)點為點F,點C的對應(yīng)點為點D,拋物線y=ax2+bx+c過點A,E,D.
(1)判斷點E是否在y軸上,并說明理由;
(2)求拋物線的函數(shù)表達式;
(3)在x軸的上方是否存在點P,點Q,使以點O,B,P,Q為頂點的平行四邊形的面積是矩形ABOC面積的2倍,且點P在拋物線上?若存在,請求出點P,點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2008年遼寧省沈陽市中考數(shù)學試卷(解析版) 題型:解答題

(2008•沈陽)如圖所示,在平面直角坐標系中,矩形ABOC的邊BO在x軸的負半軸上,邊OC在y軸的正半軸上,且AB=1,OB=,矩形ABOC繞點O按順時針方向旋轉(zhuǎn)60°后得到矩形EFOD.點A的對應(yīng)點為點E,點B的對應(yīng)點為點F,點C的對應(yīng)點為點D,拋物線y=ax2+bx+c過點A,E,D.
(1)判斷點E是否在y軸上,并說明理由;
(2)求拋物線的函數(shù)表達式;
(3)在x軸的上方是否存在點P,點Q,使以點O,B,P,Q為頂點的平行四邊形的面積是矩形ABOC面積的2倍,且點P在拋物線上?若存在,請求出點P,點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年江蘇省連云港市中考數(shù)學原創(chuàng)試卷大賽(4)(解析版) 題型:解答題

(2008•沈陽)如圖所示,在6×6的方格紙中,每個小方格都是邊長為1的正方形,我們稱每個小正方形的頂點為格點,以格點為頂點的圖形稱為格點圖形,如圖①中的三角形是格點三角形.
(1)請你在圖①中畫一條直線將格點三角形分割成兩部分,將這兩部分重新拼成兩個不同的格點四邊形,并將這兩個格點四邊形分別畫在圖②,圖③中;
(2)直接寫出這兩個格點四邊形的周長.

查看答案和解析>>

同步練習冊答案