(2005•龍巖)已知關于x的方程(m-1)x2-2mx+m=0有兩個不相等的實數(shù)根x1、x2;
(1)求m的取值范圍;
(2)若(x1-x22=8,求m的值.
【答案】分析:(1)根據(jù)一元二次方程的根的判別式△>0時,方程有兩個不相等的實數(shù)根,建立關于m的不等式,然后求出m的取值范圍;
(2)把根與系數(shù)的關系式代入(x1-x22=8即(x1-x22=(x1+x22-4x1x2=8,代入即可得到一個關于m的方程,求得m的值.
解答:解:(1)∵a=m-1,b=-2m,c=m,
而方程有兩個不相等的實數(shù)根,
∴△=b2-4ac=4m2-4(m-1)m=4m>0,
∴m>0(m≠1);
(2)∵,
∴(x1-x22=(x1+x22-4x1x2==8,
解得:m1=2,m2=
經(jīng)檢驗2和都是方程的解.
點評:總結:1、一元二次方程根的情況與判別式△的關系:
(1)△>0?方程有兩個不相等的實數(shù)根;
(2)△=0?方程有兩個相等的實數(shù)根
(3)△<0?方程沒有實數(shù)根.
2、若一元二次方程有實根,則根與系數(shù)的關系為:x1+x2=,x1•x2=
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2005•龍巖)已知二次函數(shù)圖象的頂點坐標為M(2,0),直線y=x+2與該二次函數(shù)的圖象交于A、B兩點,其中點A在y軸上(如圖示)
(1)求該二次函數(shù)的解析式;
(2)P為線段AB上一動點(A、B兩端點除外),過P作x軸的垂線與二次函數(shù)的圖象交于點Q,設線段PQ的長為l,點P的橫坐標為x,求出l與x之間的函數(shù)關系式,并求出自變量x的取值范圍;
(3)在(2)的條件下,線段AB上是否存在一點P,使四邊形PQMA為梯形?若存在,求出點P的坐標,并求出梯形的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年福建省龍巖市中考數(shù)學試卷(大綱卷)(解析版) 題型:解答題

(2005•龍巖)已知二次函數(shù)圖象的頂點坐標為M(2,0),直線y=x+2與該二次函數(shù)的圖象交于A、B兩點,其中點A在y軸上(如圖示)
(1)求該二次函數(shù)的解析式;
(2)P為線段AB上一動點(A、B兩端點除外),過P作x軸的垂線與二次函數(shù)的圖象交于點Q,設線段PQ的長為l,點P的橫坐標為x,求出l與x之間的函數(shù)關系式,并求出自變量x的取值范圍;
(3)在(2)的條件下,線段AB上是否存在一點P,使四邊形PQMA為梯形?若存在,求出點P的坐標,并求出梯形的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《圓》(15)(解析版) 題型:解答題

(2005•龍巖)已知:如圖⊙O是Rt△CDE的外接圓,BC⊥CE,BD和CE的延長線交于點A,且OB∥ED.
(1)求證:AD是⊙O的切線;
(2)若BC=6,AD=4,求⊙O的半徑r.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年福建省龍巖市中考數(shù)學試卷(大綱卷)(解析版) 題型:解答題

(2005•龍巖)已知:如圖⊙O是Rt△CDE的外接圓,BC⊥CE,BD和CE的延長線交于點A,且OB∥ED.
(1)求證:AD是⊙O的切線;
(2)若BC=6,AD=4,求⊙O的半徑r.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年福建省龍巖市中考數(shù)學試卷(大綱卷)(解析版) 題型:填空題

(2005•龍巖)已知a、b是實數(shù),且滿足(a+2)2+|b-3|=0,則a+b=   

查看答案和解析>>

同步練習冊答案