【題目】畫圖并填空:如圖,方格紙中每個小正方形的邊長都為1.在方格紙內(nèi)將△ABC經(jīng)過一次平移后得到△A′B′C′,圖中標(biāo)出了點B的對應(yīng)點B′.
(1)在給定方格紙中畫出平移后的△A′B′C′;
利用網(wǎng)格點和三角板畫圖或計算:
(2)畫出AB邊上的中線CD;
(3)畫出BC邊上的高線AE;
(4)△A′B′C′的面積為______.
【答案】(1)作圖見解析;(2)作圖見解析;(3)作圖見解析;(4)8.
【解析】解:(1)如圖所示: 即為所求;
(2)如圖所示:CD就是所求的中線;
(3)如圖所示:AE即為BC邊上的高;
(4).
故的面積為8.
因此,本題正確答案是:8.
【題型】解答題
【結(jié)束】
24
【題目】如圖,⊿ABC中,∠A=40°,∠ACB=104°,BD為AC邊上的高,BE是⊿ABC的角平分線,求∠EBD的度數(shù).
【答案】32°
【解析】試題分析:根據(jù)三角形的內(nèi)角和定理求出∠ABC,再根據(jù)角平分線的定義求出∠ABE,然后利用三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和列式求出∠BED,再根據(jù)直角三角形兩銳角互余列式進行計算即可得解.
試題解析:由三角形內(nèi)角和定理,得∠B+∠ACB+∠BAC=180°,
又∠A=40°,∠ACB=104°,
∴∠ABC=180°-40°-104°=36°,
又∵BE平分∠ABC,
∴∠ABE=∠ABC=18°
∴∠BED=∠A+∠ABE=40°+18°=58°,
又∵∠BED+∠DBE=90°,
∴∠DBE=90°-∠BED=90°-58°=32°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四人做傳數(shù)游戲,甲任報一個數(shù)給乙,乙把這個數(shù)加1傳給丙,丙再把所得的數(shù)平方后傳給丁,丁把所聽到的數(shù)減1報出答案.若甲報的數(shù)為﹣9,則丁的答案是( 。
A.63B.52C.30D.﹣17
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個多邊形的所有內(nèi)角與它的一個外角之和是2018°,求這個外角的度數(shù)和它的邊數(shù).
【答案】38° ; 邊數(shù)13
【解析】試題分析:根據(jù)多邊形的內(nèi)角和公式(n-2)180°可知,多邊形的內(nèi)角和是180°的倍數(shù),然后列式求解即可.
試題解析:設(shè)多邊形的邊數(shù)是n,加的外角為α,則
(n-2)180°+α=2018°,
α=2378°-180°n,又0<α<180°,
即0<2378°-180°n<180°,
解得: <n<,
又n為正整數(shù),
可得n=13,
此時α=38°滿足條件,
答:這個外角的度數(shù)是38°,它的13邊形.
【點睛】本題考查了多邊形的內(nèi)角和公式,利用好多邊形的內(nèi)角和是180°的倍數(shù)是解題的關(guān)鍵.
【題型】解答題
【結(jié)束】
22
【題目】已知, 求 (1) ; (2) .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC內(nèi)接于⊙O,且AB=AC,直徑AD交BC于點E,F(xiàn)是OE上的一點,使CF∥BD.
(1)求證:BE=CE;
(2)試判斷四邊形BFCD的形狀,并說明理由;
(3)若BC=8,AD=10,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)填空21-20=2( ); 22-21=2( ) ;23 -22=2( )
(2)請用字母表示第n個等式,并驗證你的發(fā)現(xiàn).
(3)利用(2)中你的發(fā)現(xiàn),求20+21+22+23+…+22016+22017的值.
【答案】(1)0,1,2;(2)證明見解析;(3)
【解析】試題分析:(1)根據(jù)0次冪的意義和乘方的意義進行計算即可;
(2)觀察各等式得到2的相鄰兩個非負(fù)整數(shù)冪的差等于其中較小的2的非負(fù)整數(shù)冪,即2n-2n-1=2n-1(n為正整數(shù));
(3)由于21-20=20,22-21=21,23-22=22,…22018-22017=22017,然后把等式左邊與左邊相加,右邊與右邊相加即可求解.
試題解析:(1)21-20=1=20;22-21=2=21;23-22=4=22,
故答案為:0,1,2;
(2)觀察可得:2n-2n-1=2n-1(n為正整數(shù)),證明如下:
2n-2n-1=2×2n-1-2n-1=2n-1×(2-1)=2n-1;
(3)∵21-20=20,
22-21=21,
23-22=22,
…
22018-22017=22017,
∴22018-20=20+21+22+23+…+22016+22017,
∴20+21+22+23+…+22016+22017的值為22018-1.
【題型】解答題
【結(jié)束】
27
【題目】(1) 如圖1,MA1∥NA2,則∠A1+∠A2=_________度.
如圖2,MA1∥NA3,則∠A1+∠A2+∠A3=_________ 度.
如圖3,MA1∥NA4,則∠A1+∠A2+∠A3+∠A4=_________度.
如圖4,MA1∥NA5,則∠A1+∠A2+∠A3+∠A4+∠A5=_________度.
如圖5,MA1∥NAn,則∠A1+∠A2+∠A3+…+∠An=_________ 度.
(2) 如圖,已知AB∥CD,∠ABE和∠CDE的平分線相交于F,∠E=80°,求∠BFD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某玩具廠有4個車間,某周是質(zhì)量檢查周,現(xiàn)每個車間都原有a(a>0)個成品,且每個車間每天都生產(chǎn)b(b>0)個成品,質(zhì)量科派出若干名檢驗員周一、周二檢驗其中兩個車間原有的和這兩天生產(chǎn)的所有成品,然后,周三到周五檢驗另外兩個車間原有的和本周生產(chǎn)的所有成品,假定每名檢驗員每天檢驗的成品數(shù)相同.
(1)這若干名檢驗員1天共檢驗多少個成品?(用含a、b的代數(shù)式表示)
(2)若一名檢驗員1天能檢驗b個成品,則質(zhì)量科至少要派出多少名檢驗員?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】攀枝花芒果由于品質(zhì)高、口感好而聞名全國,通過優(yōu)質(zhì)快捷的網(wǎng)絡(luò)銷售渠道,小明的媽媽先購買了2箱A品種芒果和3箱B品種芒果,共花費450元;后又購買了l箱A品種芒果和2箱B品種芒果,共花費275元(每次兩種芒果的售價都不變).
(1)問A品種芒果和B品種芒果的售價分別是每箱多少元?
(2)現(xiàn)要購買兩種芒果共18箱,要求B品種芒果的數(shù)量不少于A品種芒果數(shù)量的2倍,但不超過A品種芒果數(shù)量的4倍,請你設(shè)計購買方案,并寫出所需費用最低的購買方案.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com