【題目】在□ABCD中,已知∠A﹣∠B=20°,則∠C=( 。
A. 60° B. 80° C. 100° D. 120°
科目:初中數(shù)學(xué) 來源: 題型:
【題目】求證:不論k為何值時,關(guān)于x的一元二次方程x2+(k﹣2)x+(k﹣4)=0有兩個不相等的實數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道,任意一個正整數(shù)n都可以進行這樣的分解:n=p×q(p,q是正整數(shù),且p≤q),在n的所有這種分解中,如果p,q兩因數(shù)之差的絕對值最小,我們就稱p×q是n的最佳分解.并規(guī)定:F(n)=.例如12可以分解成1×12,2×6或3×4,因為12﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F(12)=.
(1)如果一個正整數(shù)a是另外一個正整數(shù)b的平方,我們稱正整數(shù)a是完全平方數(shù).求證:對任意一個完全平方數(shù)m,總有F(m)=1;
(2)如果一個兩位正整數(shù)t,t=10x+y(1≤x≤y≤9,x,y為自然數(shù)),交換其個位上的數(shù)與十位上的數(shù)得到的新數(shù)減去原來的兩位正整數(shù)所得的差為18,那么我們稱這個數(shù)t為“吉祥數(shù)”,求所有“吉祥數(shù)”中F(t)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀:我們約定,在平面直角坐標(biāo)系中,經(jīng)過某點且平行于坐標(biāo)軸或平行于兩坐標(biāo)軸夾角平分線的直線,叫該點的“特征線”.例如,點M(1,3)的特征線有:x=1,y=3,y=x+2,y=﹣x+4.
問題與探究:如圖,在平面直角坐標(biāo)系中有正方形OABC,點B在第一象限,A、C分別在x軸和y軸上,拋物線經(jīng)過B、C兩點,頂點D在正方形內(nèi)部.
(1)直接寫出點D(m,n)所有的特征線;
(2)若點D有一條特征線是y=x+1,求此拋物線的解析式;
(3)點P是AB邊上除點A外的任意一點,連接OP,將△OAP沿著OP折疊,點A落在點A′的位置,當(dāng)點A′在平行于坐標(biāo)軸的D點的特征線上時,滿足(2)中條件的拋物線向下平移多少距離,其頂點落在OP上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,D是BC的中點,AC的垂直平分線分別交AC、AD、AB于點E、O、F,則圖中全等三角形的對數(shù)是( )
A.1對
B.2對
C.3對
D.4對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校進行書法比賽,有39名同學(xué)參加預(yù)賽,只能有19名同學(xué)參加決賽,他們預(yù)賽的成績各不相同,其中一名同學(xué)想知道自己能否進入決賽,不僅要了解自己的預(yù)賽成績,還要了解這39名同學(xué)預(yù)賽成績的( 。
A.平均數(shù)
B.中位數(shù)
C.方差
D.眾數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知任意三角形的三邊長,如何求三角形面積?
古希臘的幾何學(xué)家海倫解決了這個問題,在他的著作《度量論》一書中給出了計算公式﹣﹣海倫公式S=(其中a,b,c是三角形的三邊長,p=,S為三角形的面積),并給出了證明
例如:在△ABC中,a=3,b=4,c=5,那么它的面積可以這樣計算:
∵a=3,b=4,c=5,∴p==6,∴S===6.
事實上,對于已知三角形的三邊長求三角形面積的問題,還可用我國南宋時期數(shù)學(xué)家秦九韶提出的秦九韶公式等方法解決.
如圖,在△ABC中,BC=5,AC=6,AB=9
(1)用海倫公式求△ABC的面積;
(2)求△ABC的內(nèi)切圓半徑r.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com