分析 (1)連接OD,OB,根據(jù)全等三角形的性質(zhì)得到∠1=∠2,根據(jù)切線的性質(zhì)得到∠ODC=90°,根據(jù)全等三角形的性質(zhì)得到∠OBC=∠ODC=90°,于是得到結(jié)論;
(2)過(guò)D作DE⊥AC于E,根據(jù)勾股定理得到OC=10,根據(jù)三角形的面積公式得到DE=$\frac{OD•CD}{OC}$=$\frac{24}{5}$,根據(jù)射影定理得到OD2=OE•OC,求得OE=$\frac{36}{10}$=$\frac{18}{5}$,根據(jù)勾股定理即可得到結(jié)論.
解答 解:(1)連接OD,OB,
在△ADC與△ABC中,$\left\{\begin{array}{l}{AD=AB}\\{CD=CB}\\{AC=AC}\end{array}\right.$,
∴△ADC≌△ABC,
∴∠1=∠2,
∵CD是⊙O的切線,
∴∠ODC=90°,
在△CDO與△CBO中,$\left\{\begin{array}{l}{CD=CB}\\{∠1=∠2}\\{OC=OC}\end{array}\right.$,
∴△CDO≌△CBO,
∴∠OBC=∠ODC=90°,
∴OB⊥CB,
∴直線BC是⊙O的切線;
(2)過(guò)D作DE⊥AC于E,
∵∠ODC=90°,OD=6,CD=8,
∴OC=10,
∴DE=$\frac{OD•CD}{OC}$=$\frac{24}{5}$,
∵∠ODC=90°,DE⊥OC,
∴OD2=OE•OC,
∴OE=$\frac{36}{10}$=$\frac{18}{5}$,
∴AE=$\frac{48}{5}$,
∴AD=$\sqrt{D{E}^{2}+A{E}^{2}}$=$\sqrt{(\frac{24}{5})^{2}+(\frac{48}{5})^{2}}$=$\frac{24\sqrt{5}}{5}$.
點(diǎn)評(píng) 本題考查了切線的判定和性質(zhì),全等三角形的判斷和性質(zhì),射影定理,勾股定理,正確的作出輔助線是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{\frac{1}{4}}$ | B. | $\sqrt{(-2)^{2}}$ | C. | $\sqrt{-\frac{1}{3}}$ | D. | $-\sqrt{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com