【題目】小明想要測量學(xué)校食堂和食堂正前方一棵樹的高度,他從食堂樓底M處出發(fā),向前走3米到達(dá)A處,測得樹頂端E的仰角為30°,他又繼續(xù)走下臺階到達(dá)C處,測得樹的頂端E的仰角是60°,再繼續(xù)向前走到大樹底D處,測得食堂樓頂N的仰角為45°.已知A點(diǎn)離地面的高度AB=2米,∠BCA=30°,且B、C、D三點(diǎn)在同一直線上.
(1)求樹DE的高度;
(2)求食堂MN的高度.
【答案】(1)6;(2).
【解析】試題分析:(1)設(shè)DE=x,可得EF=DE﹣DF=x﹣2,從而得AF=(x﹣2),再求出CD=x、BC的長,根據(jù)AF=BD可得關(guān)于x的方程,解之可得;
(2)延長NM交DB延長線于點(diǎn)P,知AM=BP=3,由(1)得CD=x=、BC=,根據(jù)NP=PD且AB=MP可得答案.
試題解析:(1)如圖,設(shè)DE=x,∵AB=DF=2,∴EF=DE﹣DF=x﹣2,∵∠EAF=30°,∴AF= =,又∵CD===x,BC===,∴BD=BC+CD=+x,由AF=BD可得(x﹣2)=+x,解得:x=6,∴樹DE的高度為6米;
(2)延長NM交DB延長線于點(diǎn)P,則AM=BP=3,由(1)知CD=x=×6=,BC=,∴PD=BP+BC+CD=3++=3+,∵∠NDP=45°,且MP=AB=2,∴NP=PD=3+,∴NM=NP﹣MP=3+﹣2=,∴食堂MN的高度為米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB,CD相交于點(diǎn)O,OE⊥AB于O,若∠BOD=40°,則不正確的結(jié)論是( )
A.∠AOC=40° B.∠COE=130° C.∠EOD=40° D.∠BOE=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完成下面的解題過程:
用公式法解下列方程:
(1)2x2﹣3x﹣2=0.
解:a=___,b=___,c=___.
b2﹣4ac=___=___>0.
=____=___,
x1=__,x2=___.
(2)x(2x﹣)=x﹣3.
解:整理,得___.
a=__,b=___,c=___.
b2﹣4ac=___=___.
=_____=____,
x1=x2=__.
(3)(x﹣2)2=x﹣3.
解:整理,得______.
a=___,b=___,c=___.
b2﹣4ac=___=___<0.
方程___實(shí)數(shù)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法:①內(nèi)錯角相等;②兩條直線不平行必相交;③過一點(diǎn)有且只有一條直線與已知直線垂直;④平行于同一條直線的兩條直線互相平行. 其中錯誤的有( ).
A.1個;B.2個;C.3個;D.4個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,lA,lB分別表示A步行與B騎車在同一路上行駛的路程S與時間t的關(guān)系.
(1)B出發(fā)時與A相距______千米.
(2)B走了一段路后,自行車發(fā)生故障,進(jìn)行修理,所用的時間是______小時.
(3)B出發(fā)后______小時與A相遇.
(4)若B的自行車不發(fā)生故障,保持出發(fā)時的速度前進(jìn),______小時與A相遇,相遇點(diǎn)離B的出發(fā)點(diǎn)______千米.在圖中表示出這個相遇點(diǎn)C.
(5)求出A行走的路程S與時間t的函數(shù)關(guān)系式。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將坐標(biāo)原點(diǎn)O沿x軸向左平移2個單位長度得到點(diǎn)A,過點(diǎn)A作y軸的平行線交反比例函數(shù)的圖象于點(diǎn)B,AB=.
(1)求反比例函數(shù)的解析式;
(2)若P(, )、Q(, )是該反比例函數(shù)圖象上的兩點(diǎn),且時, ,指出點(diǎn)P、Q各位于哪個象限?并簡要說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD內(nèi)有一點(diǎn)P滿足AP=AB,PB=PC,連接AC、PD.
求證:(1)△APB≌△DPC;(2)∠BAP=2∠PAC.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com