【題目】下列幾何體:①球;②長方體;③圓柱;④圓錐;⑤正方體,用一個平面去截上面的幾何體,其中能截出圓的幾何體有( )
A.4個
B.3個
C.2個
D.1個
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6cm,BC=8cm.如果點E由點B出發(fā)沿BC方向向點C勻速運動,同時點F由點D出發(fā)沿DA方向向點A勻速運動,它們的速度分別為2cm/s和1cm/s.FQ⊥BC,分別交AC、BC于點P和Q,設(shè)運動時間為t(s)(0<t<4).
(1)連結(jié)EF、DQ,若四邊形EQDF為平行四邊形,求t的值;
(2)連結(jié)EP,設(shè)△EPC的面積為ycm2,求y與t的函數(shù)關(guān)系式,并求y的最大值;
(3)若△EPQ與△ADC相似,請直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點E,連接EO并延長交BC的延長線于點D,點F為BC的中點,連接EF.
(1)求證:EF是⊙O的切線;
(2)若⊙O的半徑為3,∠EAC=60°,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一輛汽車油箱內(nèi)有油48L,從某地出發(fā),每行1km耗油0.6L,如果設(shè)剩油量為y(L),行駛路程x(km)寫出y與x之間的關(guān)系式______________________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某園林專業(yè)戶計劃投資種植花卉及樹木,根據(jù)市場調(diào)查與預測,種植樹木的利潤y1與投資量x成正比例關(guān)系,種植花卉的利潤y2與投資量x的平方成正比例關(guān)系,并得到了表格中的數(shù)據(jù).
投資量x(萬元) | 2 |
種植樹木利潤y1(萬元) | 4 |
種植花卉利潤y2(萬元) | 2 |
(1)分別求出利潤y1與y2關(guān)于投資量x的函數(shù)關(guān)系式;
(2)如果這位專業(yè)戶以8萬元資金投入種植花卉和樹木,設(shè)他投入種植花卉金額m萬元,種植花卉和樹木共獲利利潤W萬元,直接寫出W關(guān)于m的函數(shù)關(guān)系式,并求他至少獲得多少利潤?他能獲取的最大利潤是多少?
(3)若該專業(yè)戶想獲利不低于22萬,在(2)的條件下,直接寫出投資種植花卉的金額m的范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】m2(a﹣2)+m(2﹣a)分解因式的結(jié)果是( )
A. (a﹣2)(m2﹣m) B. m(a﹣2)(m+1)
C. m(a﹣2)(m﹣1) D. 以上都不對
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在圖1﹣﹣圖4中,菱形ABCD的邊長為3,∠A=60°,點M是AD邊上一點,且DM= AD,點N是折線AB﹣BC上的一個動點.
(1)如圖1,當N在BC邊上,且MN過對角線AC與BD的交點時,則線段AN的長度為 .
(2)當點N在AB邊上時,將△AMN沿MN翻折得到△A′MN,如圖2,
①若點A′落在AB邊上,則線段AN的長度為;
②當點A′落在對角線AC上時,如圖3,求證:四邊形AM A′N是菱形;
③當點A′落在對角線BD上時,如圖4,求 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com