【題目】如圖,是的外接圓,的平分線與相交于點(diǎn),過點(diǎn)作的切線,與的延長(zhǎng)線交于點(diǎn),與的延長(zhǎng)線交于點(diǎn).
試判斷與的位置關(guān)系,并說明理由;
若,,求的半徑.
【答案】(1)BC∥EF,理由見解析;(2)⊙O的半徑為2.5.
【解析】
(1)連接OD,根據(jù)切線證明AE∥OD,∠E=90°,在根據(jù)直徑所對(duì)圓周角是直角得∠ACB=90°,即可證明;(2)根據(jù)切線定理即可解題.
(1)BC∥EF,理由如下:
連結(jié)OD.
∵EF是⊙O的切線交⊙O于點(diǎn)D,
∴OD⊥EF,∠ODA=∠OAD.
∴∠ODF=90°.
∵AD平分∠BAC,
∴∠BAD=∠EAD,
∴∠ODA=∠EAD,
∴OD∥AE,
∴∠ODF=∠E=90°.
∵AB是⊙O的直徑,
∴∠ACB=90°
∴∠ACB=∠E,
∴BC∥EF;
(2)∵EF是⊙O的切線,
∴DF2=BFAF.
∵FD=6,AF=9,
∴36=9BF,
∴BF=4,
∴AB=5,
∴OB=2.5
答:⊙O的半徑為2.5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,那么下列判斷不正確的是( 。
A. ac<0 B. a﹣b+c>0 C. b=﹣4a D. a+b+c>0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)將每件進(jìn)價(jià)為80元的A商品按每件100元出售,一天可售出128件.經(jīng)過市場(chǎng)調(diào)查,發(fā)現(xiàn)這種商品的銷售單價(jià)每降低1元,其日銷量可增加8件.設(shè)該商品每件降價(jià)x元,商場(chǎng)一天可通過A商品獲利潤(rùn)y元.
(1)求y與x之間的函數(shù)解析式(不必寫出自變量x的取值范圍)
(2)A商品銷售單價(jià)為多少時(shí),該商場(chǎng)每天通過A商品所獲的利潤(rùn)最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了預(yù)防“流感”,某學(xué)校對(duì)教室采用藥熏法進(jìn)行消毒,已知藥物燃燒時(shí),室內(nèi)每立方米空氣中的含藥量y(毫克/立方米)與藥物點(diǎn)燃后的時(shí)間x(分鐘)成正比例,藥物燃盡后,y與x成反比例(如圖所示).已知藥物點(diǎn)燃后4分鐘燃盡,此時(shí)室內(nèi)每立方米空氣中含藥量為8毫克.
(1)求藥物燃燒時(shí),y與x之間函數(shù)的表達(dá)式;
(2)求藥物燃盡后,y與x之間函數(shù)的表達(dá)式;
(3)研究表明,當(dāng)空氣中每立方米的含藥量不低于2毫克時(shí),才能有效殺滅空氣中的病菌,那么此次消毒有效時(shí)間有多長(zhǎng)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖工程上常用鋼珠來測(cè)量零件上小圓孔的寬口,假設(shè)鋼珠的直徑是10mm,測(cè)得鋼珠頂端離零件表面的距離為8mm,如圖所示.則這個(gè)小圓孔的寬口AB的長(zhǎng)度是( )
A. 5mm B. 6mm C. 8mm D. 10mm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,下面是二次函數(shù)圖象的一部分,則下列結(jié)論中:①;②③方程有兩個(gè)不等的實(shí)數(shù)根;④.正確的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017山東省泰安市)如圖,四邊形ABCD中,AB=AC=AD,AC平分∠BAD,點(diǎn)P是AC延長(zhǎng)線上一點(diǎn),且PD⊥AD.
(1)證明:∠BDC=∠PDC;
(2)若AC與BD相交于點(diǎn)E,AB=1,CE:CP=2:3,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在△ABC中,AB=BC,將△ABC繞點(diǎn)A沿順時(shí)針方向旋轉(zhuǎn)得△AB1C1,使點(diǎn)C1落在直線BC上(點(diǎn)C1與點(diǎn)C不重合),求證:AB1∥CB.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com