【題目】如圖,隨著社會經濟的發(fā)展,人們的環(huán)境保護意識也在逐步增強.某社區(qū)設立了“保護環(huán)境愛我地球”的宣傳牌.已知立桿AB的高度是3m,從地面上某處D點測得宣傳牌頂端C點和底端B點的仰角分別是62°和45°.求宣傳牌的高度BC的長.(精確到0.1m,參考數(shù)據:sin62°=0.83,cos62°=0.47,tan62°=1.88)
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,I是內心,AB=AC,O是AB邊上一點,以點O為圓心,OB為半徑的⊙O經過點I.
(1)求證:AI是⊙O的切線;
(2)如圖2,連接CI交AB于點E,交⊙O于點F,若tan∠IBC=,求.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市中心城區(qū)居民用水實行以戶為單位的三級階梯收費辦法:
第Ⅰ級:居民每戶每月用水不超過18噸時,每噸收水費3元;
第Ⅱ級:居民每戶每月用水超過18噸但不超過25噸,未超過18噸的部分按照第Ⅰ級標準收費,超過的部分每噸收水費4元;
第Ⅲ級:居民每戶每月用水超過25噸,未超過25噸的部分按照第Ⅰ、Ⅱ級標準收費,超過的部分每噸收水費6元.
現(xiàn)把上述水費階梯收費辦法稱為方案①;假設還存在方案②:居民每戶月用水一律按照每噸4元的標準繳費.
設一戶居民月用水x噸.
(Ⅰ)根據題意填表:
(Ⅱ)設方案①應繳水費為元,方案②應繳水費為元,分別求,關于x的函數(shù)解析式;
(Ⅲ)當時,通過計算說明居民選擇哪種付費方式更合算.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系 中,已知點和點的坐標分別為,,將繞點按順時針分別旋轉,得到,,拋物線經過點,,;拋物線經過點,,.
(1)求拋物線的解析式.
(2)如果點是直線上方拋物線上的一個動點.
①若 ,求點的坐標;
②如圖,過點作軸的垂線交直線于點,交拋物線于點,記,求與的函數(shù)關系式.當時,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為滿足市場需求,某超市在五月初五“端午節(jié)”來臨前夕,購進一種品牌
粽子,每盒進價是40元,超市規(guī)定每盒售價不得少于45元.根據以往銷售經驗發(fā)現(xiàn):當售價定為每盒45元時,每天可賣出700盒,每盒售價每提高1元,每天要少賣出20盒.
(1)試求出每天的銷售量y(盒)與每盒售價 (元)之間的函數(shù)關系式;(4分)
(2)當每盒售價定為多少元時,每天銷售的利潤 (元)最大?最大利潤是多少?(6分)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD是由三個全等矩形拼成的,AC與DE、EF、FG、HG、HB分別交于點P、Q、K、M、N,設△EPQ、△GKM、△BNC的面積依次為S1、S2、S3.若S1+S3=30,則S2的值為( ).
A.6B.8
C.10D.12
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在□ABCD中,經過A、B、C三點的⊙O與AD相切于點A,經過點C的切線與AD的延長線相交于點P,連接AC.
(1)求證:AB=AC;
(2)若AB=4,⊙O的半徑為,求PD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E為BC的中點,AE與BD相交于點F.若BC=4,∠CBD=30°,則BF的長為( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,∠EDC=∠CAB,∠DEC=90°.
(1)求證:AC∥DE;
(2)過點B作BF⊥AC于點F,連接EF,試判別四邊形BCEF的形狀,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com