作業(yè)寶如圖在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,點(diǎn)C,D,E三點(diǎn)在同一條直線上,連接BD,BE.以下四個(gè)結(jié)論:
①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),
其中結(jié)論正確的是________.

①②③
分析:①由條件證明△ABD≌△ACE,就可以得到結(jié)論;
②由△ABD≌△ACE就可以得出∠ABD=∠ACE,就可以得出∠BDC=90°而得出結(jié)論;
③由條件知∠ABC=∠ABD+∠DBC=45°,由∠ABD=∠ACE就可以得出結(jié)論;
④△BDE為直角三角形就可以得出BE2=BD2+DE2,由△DAE和△BAC是等腰直角三角形就有DE2=2AD2,BC2=2AB2,就有BC2=BD2+CD2≠BD2就可以得出結(jié)論.
解答:①∵∠BAC=∠DAE,
∴∠BAC+∠DAC=∠DAE+∠DAC,
即∠BAD=∠CAE.
在△ABD和△ACE中
,
∴△ABD≌△ACE(SAS),
∴BD=CE.故①正確;
∵△ABD≌△ACE,
∴∠ABD=∠ACE.
∵∠CAB=90°,
∴∠ABD+∠AFB=90°,
∴∠ACE+∠AFB=90°.
∵∠DFC=∠AFB,
∴∠ACE+∠DFC=90°,
∴∠FDC=90°.
∴BD⊥CE;故②正確;
③∵,∠BAC=90°,AB=AC,
∴∠ABC=45°,
∴∠ABD+∠DBC=45°.
∴∠ACE+∠DBC=45°,故③正確;
④∵BD⊥CE,
∴BE2=BD2+DE2
∵∠BAC=∠DAE=90°,AB=AC,AD=AE,
∴DE2=2AD2,BC2=2AB2
∵BC2=BD2+CD2≠BD2,
∴2AB2=BD2+CD2≠BD2,
∴BE2≠2(AD2+AB2).故④錯(cuò)誤.
故答案為:①②③.
點(diǎn)評(píng):本題考查了全等三角形的判定及性質(zhì)的運(yùn)用,垂直的判定及性質(zhì)的運(yùn)用,等腰直角三角形的性質(zhì)的運(yùn)用,勾股定理的運(yùn)用,解答時(shí)運(yùn)用全等三角形的性質(zhì)求解是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖在△ABC中,D是∠ACB與∠ABC的角平分線的交點(diǎn),BD的延長(zhǎng)線交AC于E,且∠EDC=50°,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、按要求完成作圖,并回答問(wèn)題;如圖在△ABC中:
(1)過(guò)點(diǎn)A畫BC的垂線,垂足為E;
(2)過(guò)E畫AB的平行線,交AC于點(diǎn)G;
(3)過(guò)點(diǎn)C畫直線AB的垂線,垂足為H.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•江西模擬)如圖在ABC中,已知∠C=90°,AC=BC,BC=2,若以AC的中點(diǎn)O為旋轉(zhuǎn)中心,將這個(gè)三角形旋轉(zhuǎn)180°,點(diǎn)B落在點(diǎn)B′處,則BB′=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖在△ABC和△DEF中,AB=AC=DE=DF=5,BC=EF=6,移動(dòng)△DEF,在整個(gè)移動(dòng)過(guò)程中,點(diǎn)E始終在BC邊上(點(diǎn)E不經(jīng)過(guò)B、C兩點(diǎn)),且DE經(jīng)過(guò)點(diǎn)A,設(shè)EF與AC的交點(diǎn)為M.
(1)求證:△ABC≌△DEF;
(2)證明:∠CEM=∠BAE;
(3)若重疊部分△AEM為等腰三角形,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖在△ABC中,BF、CF是角平分線,DE∥BC,分別交AB、AC于點(diǎn)D、E,DE經(jīng)過(guò)點(diǎn)F,AB=8,AC=6.則△ADE的周長(zhǎng)=
14
14

查看答案和解析>>

同步練習(xí)冊(cè)答案