【題目】如圖,在⊙O中,直徑AB垂直弦CD,E為BC弧上一點(diǎn),下列結(jié)論:①∠1=∠2;②∠3=2∠4;③∠3+∠5=180°,其中正確的是( )
A. ①③ B. ②③
C. ①②③ D. ①②
【答案】D
【解析】
(1)首先由AB⊥CD,推出弧BC=弧BD,可得∠2=∠BAC,∠BAD=∠BAC,再由OC=OA,推出∠1=∠BAC,即可推出∠1=∠2;
(2)根據(jù)(1)所推出的結(jié)論,即可推出∠4=∠2=∠1=∠BAC,然后根據(jù)外角的性質(zhì)可推出∠3=∠1+∠BAC,通過等量代換可得∠3=2∠1,即得∠3=2∠4;
(3)根據(jù)圓內(nèi)接四邊形的性質(zhì)可得∠5+∠BAC=180°,由∠1=∠BAC,可推出∠3=2∠BAC,通過等量代換可推出∠5+∠3=180°,總上所述,題目中的三個(gè)結(jié)論中正確的是①②.
(1)∵AB⊥CD,
∴弧BC=弧BD,
∴∠2=∠BAC,∠BAD=∠BAC,
∵OC=OA,
∴∠1=∠BAC,
∴∠1=∠2,
∴結(jié)論①正確;
(2)∵弧BC=弧BD,
∴∠4=∠2,
∵∠1=∠2=∠BAC,
∴∠4=∠2=∠1=∠BAC,
∴∠3=∠1+∠BAC=2∠1,
∴∠3=2∠4,
∴結(jié)論②正確;
(3)∵四邊形ACEB為圓的內(nèi)接四邊形,
∴∠5+∠BAC=180°,
∵∠BAC=∠1,∠3=2∠1,
∴∠3=2∠BAC,
∠5+∠3=180°,
∴結(jié)論③錯(cuò)誤,
總上所述,結(jié)論①②正確,
故選D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)對(duì)本校初2017屆500名學(xué)生中中考參加體育加試測(cè)試情況進(jìn)行調(diào)查,根據(jù)男生1000米及女生800米測(cè)試成績(jī)整理,繪制成不完整的統(tǒng)計(jì)圖,(圖①,圖②),請(qǐng)根據(jù)統(tǒng)計(jì)圖提供的信息,回答下列問題:
(1)該校畢業(yè)生中男生有 人;扇形統(tǒng)計(jì)圖中a= ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若500名學(xué)生中隨機(jī)抽取一名學(xué)生,這名學(xué)生該項(xiàng)成績(jī)?cè)?/span>8分及8分以下的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組為了解我市氣溫變化情況,記錄了今年月份連續(xù)天的最低氣溫(單位:℃):.關(guān)于這組數(shù)據(jù),下列結(jié)論不正確的是( )
A.平均數(shù)是 B.中位數(shù)是 C.眾數(shù)是 D.方差是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在銳角△ABC中,AD與CE分別是邊BC與AB的高,AB=12,BC=16,S△ABC=48,
求:(1)角B的度數(shù);
(2)tanC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是ABC的外接圓,AB為直徑,∠BAC的平分線交于點(diǎn)D,過點(diǎn)D作DEAC分別交AC、AB的延長(zhǎng)線于點(diǎn)E、F.
(1)求證:EF是的切線;
(2)若AC=4,CE=2,求的長(zhǎng)度.(結(jié)果保留)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)D是Rt△ABC斜邊AB的中點(diǎn),過點(diǎn)B、C分別作BE∥CD,CE∥BD.
(1)若∠A=60°,AC=3,求CD的長(zhǎng);
(2)求證:BC⊥DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的高,AE是BC邊上的中線,∠C=45°,sinB=,AD=1.
(1)求BC的長(zhǎng);
(2)求tan∠DAE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,AB=CB,以AB為直徑的⊙O交于點(diǎn)D,過D作⊙O的切線交AC于E,且DE⊥AC,則∠C的度數(shù)為=_________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,弦CD⊥AB于H,過CD延長(zhǎng)線上一點(diǎn)E作⊙O的切線交AB的延長(zhǎng)線于F,切點(diǎn)為G,連接AG交CD于K.
(1)如圖1,求證:KE=GE;
(2)如圖2,連接CABG,若∠FGB=∠ACH,求證:CA∥FE;
(3)如圖3,在(2)的條件下,連接CG交AB于點(diǎn)N,若sinE=,AK=,求CN的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com