【題目】如圖,已知二次函數的圖象過點O(0,0),A(4,0),B(2,﹣),M是OA的中點.
(1)求此二次函數的解析式;
(2)設P是拋物線上的一點,過P作x軸的平行線與拋物線交于另一點Q,要使四邊形PQAM是菱形,求P點的坐標;
(3)將拋物線在x軸下方的部分沿x軸向上翻折,得曲線OB′A(B′為B關于x軸的對稱點),在原拋物線x軸的上方部分取一點C,連接CM,CM與翻折后的曲線OB′A交于點D.若△CDA的面積是△MDA面積的2倍,這樣的點C是否存在?若存在求出C點的坐標,若不存在,請說明理由.
【答案】(1) y=x2﹣x.(2) P(1,﹣).(3) 點C的坐標為(2+2,)或(2﹣2,).
【解析】
試題(1)利用待定系數法求出二次函數的解析式;
(2)由四邊形PQAM是菱形,可知PQ=2且PQ∥x軸,因此點P、Q關于對稱軸x=2對稱,可得點P橫坐標為1,從而求出點P的坐標;
(3)假設存在滿足條件的點C.由△CDA的面積是△MDA面積的2倍,可得點C縱坐標是點D縱坐標的3倍,由此列方程求出點C的坐標.
試題解析:(1)∵拋物線過原點,∴設其解析式為:y=ax2+bx.
∵拋物線經過點A(4,0),B(2,﹣),
∴,解得,
∴二次函數解析式為:y=x2﹣x.
(2)∵y=x2﹣x=(x﹣2)2﹣,
∴拋物線對稱軸為直線:x=2.
∵四邊形PQAM是菱形,
∴PQ=MA=2,PQ∥x軸.
∴點P、Q關于對稱軸x=2對稱,
∴點P橫坐標為1.
當x=1時,y=﹣=﹣.
∴P(1,﹣).
(3)依題意,翻折之后的拋物線解析式為:y=﹣x2+x.
假設存在這樣的點C,
∵△CDA的面積是△MDA面積的2倍,
∴CD=2MD,∴CM=3MD.
如圖所示,分別過點D、C作x軸的垂線,垂足分別為點E、點F,則有DE∥CF.
∴,
∴CF=3DE,MF=3ME.
設C(x,x2﹣x),
則MF=x﹣2,ME=MF=(x﹣2),OE=ME+OM=x+
∴D(x+,﹣(x+)2+(x+)).
∵CF=3DE,
∴x2﹣x=3[﹣(x+)2+(x+)],
整理得:x2﹣4x﹣8=0,
解得:x1=2+2,x2=2﹣2.
∴y1=,y2=,
∴存在滿足條件的點C,點C的坐標為(2+2,)或(2﹣2,).
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數y=k1x+b的圖象與反比例函數y=的圖象交于A(4,﹣2)、B(﹣2,n)兩點,與x軸交于點C.
(1)求k2,n的值;
(2)請直接寫出不等式k1x+b<的解集;
(3)將x軸下方的圖象沿x軸翻折,點A落在點A′處,連接A′B,A′C,求△A′BC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了解某校九年級學生立定跳遠水平,隨機抽取該年級50名學生進行測試,并把測試成績(單位:m)繪制成不完整的頻數分布表和頻數分布直方圖.
學生立定跳遠測試成績的頻數分布表
分組 | 頻數 |
1.2≤x<1.6 | a |
1.6≤x<2.0 | 12 |
2.0≤x<2.4 | b |
2.4≤x<2.8 | 10 |
請根據圖表中所提供的信息,完成下列問題:
(1)表中a= ,b= ,樣本成績的中位數落在 范圍內;
(2)請把頻數分布直方圖補充完整;
(3)該校九年級共有1000名學生,估計該年級學生立定跳遠成績在2.4≤x<2.8范圍內的學生有多少人?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校為了更好的開展“學校特色體育教育”,從全校八年級的各班分別隨機抽取了5名男生和5名女生,組成了一個容量為60的樣本,進行各項體育項目的測試,了解他們的身體素質情況.下表是整理樣本數據,得到的關于每個個體的測試成績的部分統計表、圖:某校60名學生體育測試成績頻數分布表
成績 | 劃記 | 頻數 | 百分比 |
優(yōu)秀 | 正正正 | a | 30% |
良好 | 正正正正正正 | 30 | b |
合格 | 正 | 9 | 15% |
不合格 | 3 | 5% | |
合計 | 60 | 60 | 100% |
(說明:40﹣﹣﹣55分為不合格,55﹣﹣﹣70分為合格,70﹣﹣﹣85分為良好,85﹣﹣﹣100分為優(yōu)秀)請根據以上信息,解答下列問題:
(1)表中的a=_____,b=_____;
(2)請根據頻數分布表,畫出相應的頻數分布直方圖;
(3)如果該校八年級共有150名學生,根據以上數據,估計該校八年級學生身體素質良好及以上的人數為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某校教學樓AB后方有一斜坡,已知斜坡CD的長為12米,坡角α為60°,根據有關部門的規(guī)定,∠α≤39°時,才能避免滑坡危險,學校為了消除安全隱患,決定對斜坡CD進行改造,在保持坡腳C不動的情況下,學校至少要把坡頂D向后水平移動多少米才能保證教學樓的安全?(結果取整數)
(參考數據:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F,再分別以點B,F為圓心,大于的長為半徑畫弧,兩弧交于一點P,連接AP并延長交BC于點E,連接EF.
(1)求證:四邊形ABEF是菱形.
(2)設AE與BF相交于點O,四邊形ABEF的周長為16,BF=4,求AE的長和∠C的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,C是半圓O上一個動點,AB為半圓的直徑,D是弧BC的中點,過點D作半圓O的切線DE交AC的延長線于點E.
(1)求證:AE⊥DE;
(2)①已知CE=2,DE=4,則AB= ;
②連接OC,DC,當∠BAC= 度時,四邊形OBDC為菱形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點A為某封閉圖形邊界上一定點,動點P從點A出發(fā),沿其邊界順時針勻速運動一周.設點P運動的時間為x,線段AP的長為y.表示y與x的函數關系的圖象大致如圖所示,則該封閉圖形可能是( )
A. B. C. D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com