【題目】如圖是拋物線的部分圖象,其頂點為,與軸交于點,與軸的一個交點為,連接.以下結(jié)論:①;②拋物線經(jīng)過點;③;④當時, .其中正確的是( )
A.①③B.②③C.①④D.②④
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為,A、B為⊙O上兩點,C為⊙O內(nèi)一點,AC⊥BC,AC=,BC=.
(1)判斷點O、C、B的位置關(guān)系;
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:有兩個相鄰內(nèi)角和等于另兩個內(nèi)角和的一半的四邊形稱為半四邊形,這兩個角的夾邊稱為對半線.
(1)如圖1,在對半四邊形中,,求與的度數(shù)之和;
(2)如圖2,為銳角的外心,過點的直線交,于點,,,求證:四邊形是對半四邊形;
(3)如圖3,在中,,分別是,上一點,,,為的中點,,當為對半四邊形的對半線時,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于的一元二次方程有兩個不相等且非零的實數(shù)根,探究滿足的條件.
小華根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,認為可以從二次函數(shù)的角度研究一元二次方程的根的符號。下面是小華的探究過程:第一步:設(shè)一元二次方程對應(yīng)的二次函數(shù)為;
第二步:借助二次函數(shù)圖象,可以得到相應(yīng)的一元二次方程中滿足的條件,列表如下表。
方程兩根的情況 | 對應(yīng)的二次函數(shù)的大致圖象 | 滿足的條件 |
方程有兩個不相等的負實根 | ||
①_______ | ||
方程有兩個不相等的正實根 | ② | ③____________ |
(1)請將表格中①②③補充完整;
(2)已知關(guān)于的方程,若方程的兩根都是正數(shù),求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在淮河的右岸邊有一高樓,左岸邊有一坡度的山坡,點與點在同一水平面上,與在同一平面內(nèi).某數(shù)學(xué)興趣小組為了測量樓的高度,在坡底處測得樓頂的仰角為,然后沿坡面上行了米到達點處,此時在處測得樓頂的仰角為,求樓的高度.(結(jié)果保留整數(shù))(參考數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)小組在郊外的水平空地上對無人機進行測高實驗.如圖,兩臺測角儀分別放在A、B位置,且離地面高均為1米(即米),兩臺測角儀相距50米(即AB=50米).在某一時刻無人機位于點C (點C與點A、B在同一平面內(nèi)),A處測得其仰角為,B處測得其仰角為.(參考數(shù)據(jù):,,,,)
(1)求該時刻無人機的離地高度;(單位:米,結(jié)果保留整數(shù))
(2)無人機沿水平方向向左飛行2秒后到達點F(點F與點A、B、C在同一平面內(nèi)),此時于A處測得無人機的仰角為,求無人機水平飛行的平均速度.(單位:米/秒,結(jié)果保留整數(shù))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點在的直徑延長線上,點為上,過作,與的延長線相交于,為的切線,,.
(1)求證:;
(2)求的長;
(3)若的平分線與交于點,為的內(nèi)心,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2﹣2ax+3與x軸交于點A、B(A左B右),且AB=4,與y軸交于C點.
(1)求拋物線的解析式;
(2)如圖,證明:對于任意給定的一點P(0,b)(b>3),存在過點P的一條直線交拋物線于M、N兩點,使得PM=MN成立;
(3)將該拋物線在0≤x≤4間的部分記為圖象G,將圖象G在直線y=t上方的部分沿y=t翻折,其余部分保持不變,得到一個新的函數(shù)的圖象,記這個函數(shù)的最大值為m,最小值為n,若m﹣n≤6,求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx﹣3與x軸交于A,B兩點,與y軸交于點C,且OB=OC=3OA,求拋物線的解析式( )
A.y=x2﹣2x﹣3B.y=x2﹣2x+3C.y=x2﹣2x﹣4D.y=x2﹣2x﹣5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com