【題目】已知AB為⊙O的直徑,OC⊥AB,弦DC與OB交于點F,在直線AB上有一點F,連接ED,且有ED=EF.
(1)如圖1,求證:ED為⊙O的切線;
(2)如圖2,直線ED與切線AG相交于G,且OF=2,⊙O的半徑為6,求AG的長.

【答案】
(1)證明:連接OD,

∵ED=EF,

∴∠EDF=∠EFD,

∵∠EFD=∠CFO,

∴∠EDF=∠CFO.

∵OD=OC,

∴∠ODF=∠OCF.

∵OC⊥AB,

∴∠CFO+∠OCF=∠EDF+∠ODF=∠EDO=90°,

∴ED為⊙O的切線


(2)解:連接OD,過點D作DM⊥BA于點M,

由(1)可知△EDO為直角三角形,設(shè)ED=EF=a,EO=EF+FO=a+2,

由勾股定理得,EO2=ED2+DO2,即(a+2)2=a2+62,

解得,a=8,即ED=8,EO=10.

∵sin∠EOD= = ,cos∠EOD= = ,

∴DM=ODsin∠EOD=6× = ,MO=ODcos∠EOD=6× = ,

∴EM=EO﹣MO=10﹣ = ,EA=EO+OA=10+6=16.

∵GA切⊙O于點A,

∴GA⊥EA,

∴DM∥GA,

∴△EDM∽△EGA,

= ,即 = ,

解得,GA=12.


【解析】(1)連接OD,由ED=EF可得出∠EDF=∠EFD,由對頂角相等可得出∠EDF=∠CFO;由OD=OC可得出∠ODF=∠OCF,結(jié)合OC⊥AB即可得知∠EDF+∠ODF=90°,即∠EDO=90°,由此證出ED為⊙O的切線;(2)連接OD,過點D作DM⊥BA于點M,結(jié)合(1)的結(jié)論根據(jù)勾股定理可求出ED、EO的長度,結(jié)合∠DOE的正弦、余弦值可得出DM、MO的長度,根據(jù)切線的性質(zhì)可知GA⊥EA,從而得出DM∥GA,根據(jù)相似三角形的判定定理即可得出△EDM∽△EGA,根據(jù)相似三角形的性質(zhì)即可得出GA的長度

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某食品廠從生產(chǎn)的袋裝食品中抽出樣品20袋,檢測每袋的重量是否符合標準,超過或不足的部分分別用正、負數(shù)來表示,記錄如下表:

與標準重量的差值(單位:g)

﹣5

﹣2

0

1

3

6

袋數(shù)

1

4

3

4

5

3

(1)計算這批樣品的平均重量,判斷它比標準重量重還是輕多少?

(2)若標準重量為450克,則這批樣品的總重量是多少?

(3)若這種食品的合格標準為450±5克,則這批樣品的合格率為   (直接填寫答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】盛盛同學到某高校游玩時,看到運動場的宣傳欄中的部分信息(如下表):

院系籃球賽成績公告

比賽場次

勝場

負場

積分

22

12

10

34

22

14

8

36

22

0

22

22

盛盛同學結(jié)合學習的知識設(shè)計了如下問題,請你幫忙完成下列問題:

(1)從表中可以看出,負一場積______,勝一場積_______

(2)某隊在比完22場的前提下,勝場總積分能等于其負場總積分的2倍嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知[x]表示不超過x的最大整數(shù),如[3]=3;[3.14]=3;[﹣3.14]=﹣4.

根據(jù)以上規(guī)則解答下列問題:

(1)[﹣8]=   ;[5.4]=   ;[﹣6.99]=   ;

(2)若[x]=﹣5,則x的范圍是   

(3)已知正整數(shù)n小于100, =n﹣2,求所有滿足條件正整數(shù)n.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖像如圖所示,圖像過點(﹣1,0),對稱軸為直線x=2,下列結(jié)論:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若點A(﹣3,y1)、點B(﹣ ,y2)、點C( ,y3)在該函數(shù)圖像上,則y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的兩根為x1和x2 , 且x1<x2 , 則x1<﹣1<5<x2 . 其中正確的結(jié)論有( )

A.2個
B.3個
C.4個
D.5個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在△ABC中,ACBC,ACB=90°,過點CCDAB于點D,點EAB邊上一動點(不含端點A,B),連接CE,過點BCE的垂線交直線CE于點F,交直線CD于點G.

(1)求證:AECG

(2)若點E運動到線段BD上時(如圖②),試猜想AE,CG的數(shù)量關(guān)系是否發(fā)生變化,請寫出你的結(jié)論;

(3)過點AAHCE,垂足為點H,并交CD的延長線于點M(如圖③),找出圖中與BE相等的線段,并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,點P的坐標是(n,0)(n>0),拋物線y=﹣x2+bx+c經(jīng)過原點O和點P,已知正方形ABCD的三個頂點為A(2,2),B(3,2),D(2,3).

(參考公式:y=ax2+bx+c(a≠0)的頂點坐標是(﹣ , ).
(1)若當n=4時求c,b并寫出拋物線對稱軸及y的最大值;
(2)求證:拋物線的頂點在函數(shù)y=x2的圖像上;
(3)若拋物線與直線AD交于點N,求n為何值時,△NPO的面積為1;
(4)若拋物線經(jīng)過正方形區(qū)域ABCD(含邊界),請直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個正方體的六個面上分別標有1、2、3、4、5、6,根據(jù)圖中從各個方向看到的數(shù)字,解答下面的問題:“?”處的數(shù)字是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知a是最大的負整數(shù),b是多項式2m2n﹣m3n2﹣m﹣2的次數(shù),c是單項式﹣2xy2的系數(shù),且a、b、c分別是點A、B、C在數(shù)軸上對應的數(shù).

(1)求a、b、c的值,并在數(shù)軸上標出點A、B、C.

(2)若M點在此在此數(shù)軸上運動,請求出M點到AB兩點距離之和的最小值;

(3)若動點P、Q同時從A、B出發(fā)沿數(shù)軸負方向運動,點P的速度是每秒個單位長度,點Q的速度是每秒2個單位長度,求運動幾秒后,點Q能追上點P?

(4)在數(shù)軸上找一點N,使點MA、B、C三點的距離之和等于10,請直接寫出所有的N對應的數(shù).(不必說明理由)

查看答案和解析>>

同步練習冊答案