精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在△ABC中,A=36°,∠C=72°,點DAC上,BC=BDDEBCAB于點E,則圖中等腰三角形共有( )

A. 3B. 4C. 5D. 6

【答案】C

【解析】

根據已知條件分別求出圖中三角形的內角度數再根據等腰三角形的判定即可找出圖中等腰三角形.

∵∠A=36°,∠C=72°,∴∠ABC=180°-(∠A+∠C)=72°,∴△ABC是等腰三角形;②∵DE∥BC,∴∠AED=∠ABC=∠C=∠ADE,∴△AED是等腰三角形;③∵BC=BD,∴△DBC是等腰三角形;∵△DBC是等腰三角形,∴∠BDC=∠C=72°,∠DBC=180°-(∠BDC+∠C)=36°,∴∠EDB=36°,又∵∠EBD=∠ABC-∠DBC=36°,∴△EDB是等腰三角形,⑤∵∠EBD=∠A=36°,∴△ADB是等腰三角形.因此圖中等腰三角形共有5.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】數學家華羅庚在一次出國訪問途中,看到飛機上鄰座的乘客閱讀的雜志上有一道智力題:求59319的立方根.華羅庚脫口而出:39.眾人感覺十分驚奇,請華羅庚給大家解讀了其中的奧秘.

你知道怎樣迅速準確的計算出結果嗎?請你按下面的問題試一試:

,又,

能確定59319的立方根是個兩位數.

59319的個位數是9,又,

能確定59319的立方根的個位數是9.

③如果劃去59319后面的三位319得到數59,

,則,可得

由此能確定59319的立方根的十位數是3

因此59319的立方根是39.

(1)現(xiàn)在換一個數110592,按這種方法求立方根,請完成下列填空.

①它的立方根是 位數.

②它的立方根的個位數是

③它的立方根的十位數是

110592的立方根是

(2)請直接填寫結果:

;

;

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我們提供如下定理:在直角三角形中,30°的銳角所對的直角邊是斜邊的一半,

如圖(1),Rt△ABC中,∠C=90°,∠A=30°,則BC=AB

請利用以上定理及有關知識,解決下列問題:

如圖(2),邊長為6的等邊三角形ABC中,點DA出發(fā),沿射線AB方向有AB運動點F同時從C出發(fā),以相同的速度沿著射線BC方向運動,過點DDE⊥ACDF交射線AC于點G

(1)當點D運動到AB的中點時,直接寫出AE的長;

(2)DF⊥AB時,求AD的長及△BDF的面積;

(3)小明通過測量發(fā)現(xiàn),當點D在線段AB上時,EG的長始終等于AC的一半,他想當點D運動到圖3的情況時,EG的長始終等于AC的一半嗎?若改變,說明理由;若不變,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,是甲、乙兩種機器人根據電腦程序工作時各自工作量y關于工作時間t的函數圖象,線段OA表示甲機器人的工作量y1()關于時間x()的函數圖象,線段BC表示乙機器人的工作量y2()關于時間a()的函數圖象,根據圖象信息回答下列填空題.

(1) 甲種機器人比乙種機器人早開始工作___ 小時,甲種機器人每小時的工作量是___噸.

(2)直線BC的表達式為     ,當乙種機器人工作5小時后,它完成的工作量是   噸.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一艘船以每小時30海里的速度向北偏東75°方向航行,在點A處測得碼頭C在船的東北方向,航行40分鐘后到達B處,這時碼頭C恰好在船的正北方向,在船不改變航向的情況下,求出船在航行過程中與碼頭C的最近距離.(結果精確到0.1海里,參考數據 ≈1.41, ≈1.73)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】勾股定理是人類最偉大的科學發(fā)現(xiàn)之一,在我國古算書《周髀算經》中早有記載.如圖1,以直角三角形的各邊為邊分別向外作正方形,再把較小的兩張正方形紙片按圖2的方式放置在最大正方形內.若知道圖中陰影部分的面積,則一定能求出(

A.直角三角形的面積

B.最大正方形的面積

C.較小兩個正方形重疊部分的面積

D.最大正方形與直角三角形的面積和

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點 A y 軸正半軸上點 B x 軸負半軸上,且 AB=2,∠BAO=15°,點 P 是線段OA 上的一個動點,則 PB PA 的最小值為_____________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABO的面積為8OAOB,BC12,點P的坐標是(a,6).

(1) ABC三個頂點的坐標分別為A ),B , ),C , );

(2) 是否存在點P,使得?若存在,求出滿足條件的所有點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知點D、E分別是∠B的兩邊BCBA上的點,∠DEB2BFBA上一點.

1)如圖①,若DF平分∠BDE,求證:BDDE+EF

2)如圖②,若DFDBE的外角平分線,BD、DE、EF三者有怎樣的數量關系?請證明你的結論.

查看答案和解析>>

同步練習冊答案