【題目】(1)如圖1,點(diǎn)P是等邊△ABC內(nèi)一點(diǎn),已知PA=3,PB=4,PC=5,求∠APB的度數(shù).
要直接求∠A的度數(shù)顯然很因難,注意到條件中的三邊長(zhǎng)恰好是一組勾股數(shù),因此考慮借助旋轉(zhuǎn)把這三邊集中到一個(gè)三角形內(nèi),如圖2,作∠PAD=60°使AD=AP,連接PD,CD,則△PAD是等邊三角形.
∴ =AD=AP=3,∠ADP=∠PAD=60°
∵△ABC是等邊三角形
∴AC=AB,∠BAC=60°
∴∠BAP=
∴△ABP≌△ACD
∴BP=CD=4, =∠ADC
∵在△PCD中,PD=3,PC=5,CD=4,PD2+CD2=PC2
∴∠PDC= °
∴∠APB=∠ADC=∠ADP+∠PDC=60°+90°=150°
(2)如圖3,在△ABC中,AB=BC,∠ABC=90°,點(diǎn)P是△ABC內(nèi)一點(diǎn),PA=1,PB=2,PC=3,求∠APB的度數(shù).
【答案】(1)PD,∠CAD,∠APB,90;(2)135°.
【解析】
(1)如圖2,作∠PAD=60°使AD=AP,連接PD,CD,則△PAD是等邊三角形.只要證明△ABP≌△ACD(SAS),推出BP=CD=4,∠APB=∠ADC,再利用勾股定理的逆定理即可解決問(wèn)題;
(2)把△PAC繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)90°得到△DBA,如圖,想辦法證明△BPD是等腰三角形即可解決問(wèn)題;
(1)如圖2,作∠PAD=60°使AD=AP,連接PD,CD,則△PAD是等邊三角形.
∴PD=AD=AP=3,∠ADP=∠PAD=60°,
∵△ABC是等邊三角形,
∴AC=AB,∠BAC=60°,
∴∠BAP=∠CAD,
∴△ABP≌△ACD(SAS),
∴BP=CD=4,∠APB=∠ADC
∵在△PCD中,PD=3,PC=5,CD=4,PD2+CD2=PC2
∴∠PDC=90°
∴∠APB=∠ADC=∠ADP+∠PDC=60°+90°=150°
故答案為:PD,∠CAD,∠APB,90.
(2)解:∵∠ABC=90°,BC=AB,
∴把△PAC繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)90°得到△DBA,如圖,
∴BD=PC=3,AD=AP=2,∠PAD=90°,
∴△PAD為等腰直角三角形,
∴DP=PA=2,∠DPA=45°,
在△BPD中,PB=2,PD=2,DB=3,
∵12+(2)2=32,
∴AP2+PD2=BD2,
∴△BPD為直角三角形,
∴∠BPD=90°,
∴∠APB=∠APD+∠DPB=90°+45°=135°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究函數(shù)的圖象與性質(zhì).
(1)下表是y與x的幾組對(duì)應(yīng)值.
… | … | ||||||||
… | … |
其中m的值為_______________;
(2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標(biāo)系中描點(diǎn),并已畫(huà)出了函數(shù)圖象的一部分,請(qǐng)你畫(huà)出該圖象的另一部分;
(3)結(jié)合函數(shù)的圖象,寫(xiě)出該函數(shù)的一條性質(zhì):_____________________________;
(4)若關(guān)于x的方程有2個(gè)實(shí)數(shù)根,則t的取值范圍是___________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PA 為⊙O 的切線,A 為切點(diǎn),過(guò) A 作弦 AB⊥OP,垂足為點(diǎn) C,延長(zhǎng)BO 與 PA 的延長(zhǎng)線交于點(diǎn) D
(1) 求證:PB 為⊙O 的切線
(2) 若 OB=3,OD=5,求 PB 的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)n度后,得到△DEC,點(diǎn)D剛好落在AB邊上,
(1)求n的值;
(2)若AC=4,求DF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,∠BAC=120°,AB=AC,BD為⊙O的直徑,AD=6,求弦DC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)過(guò)江漢平原的滬蓉(上海﹣成都)高速鐵路即將動(dòng)工.工程需要測(cè)量漢江某一段的寬度.如圖①,一測(cè)量員在江岸邊的A處測(cè)得對(duì)岸岸邊的一根標(biāo)桿B在它的正北方向,測(cè)量員從A點(diǎn)開(kāi)始沿岸邊向正東方向前進(jìn)100米到達(dá)點(diǎn)C處,測(cè)得∠ACB=68°.
(1)求所測(cè)之處江的寬度(sin68°≈0.93,cos68°≈0.37,tan68°≈2.48.);
(2)除(1)的測(cè)量方案外,請(qǐng)你再設(shè)計(jì)一種測(cè)量江寬的方案,并在圖②中畫(huà)出圖形.(不用考慮計(jì)算問(wèn)題,敘述清楚即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖所示,拋物線y=-x2+bx+c與x軸的兩個(gè)交點(diǎn)分別為A(1,0),B(3,0).
(1)求拋物線的解析式;
(2)設(shè)點(diǎn)P在該拋物線上滑動(dòng),且滿足條件S△PAB=1的點(diǎn)P有幾個(gè)?并求出所有點(diǎn)P的坐標(biāo);
(3)設(shè)拋物線交y軸于點(diǎn)C,問(wèn)該拋物線對(duì)稱(chēng)軸上是否存在點(diǎn)M,使得△MAC的周長(zhǎng)最?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,從熱氣球C處測(cè)得地面A,B兩點(diǎn)的俯角分別為30°,45°,此時(shí)熱氣球C處所在位置到地面上點(diǎn)A的距離為400米.求地面上A,B兩點(diǎn)間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是半圓O的直徑,點(diǎn)C在半圓上,過(guò)點(diǎn)C的切線交BA的延長(zhǎng)線于點(diǎn)D,CD=CB,CE∥AB交半圓于點(diǎn)E.
(1)求∠D的度數(shù);
(2)求證:以點(diǎn)C,O,B,E為頂點(diǎn)的四邊形是菱形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com