分析 (1)首先根據(jù)四邊形ABCD和EFCG均為正方形,可得$\frac{AC}{BC}$=$\frac{EC}{FC}$=$\sqrt{2}$,∠ACE=∠BCF;然后根據(jù)相似三角形判定的方法,推得△CAE∽△CBF即可;
(2)首先根據(jù)△CAE∽△CBF,判斷出∠CAE=∠△CBF,再根據(jù)∠CAE+∠CBE=90°,判斷出∠EBF=90°;然后在Rt△BEF中,根據(jù)勾股定理,求出EF的長度,再根據(jù)CE、EF的關系,求出CE的長是多少即可.
解答 解:(1)∵四邊形ABCD和EFCG均為正方形,
∴$\frac{AC}{BC}$=$\frac{EC}{FC}$=$\sqrt{2}$,
又∵∠ACE+∠BCE=∠BCF+∠BCE=45°,
∴∠ACE=∠BCF,
∴△CAE∽△CBF.
(2):∵△CAE∽△CBF,
∴∠CAE=∠CBF,$\frac{AE}{BF}$=$\frac{AC}{BC}$,
又∵∠CAE+∠CBE=90°,
∴∠CBF+∠CBE=90°,
∴∠EBF=90°,
又∵$\frac{AE}{BF}$=$\frac{AC}{BC}$=$\sqrt{2}$,AE=2
∴$\frac{2}{BF}$=$\sqrt{2}$,
∴BF=$\sqrt{2}$,
∴EF2=BE2+BF2=3,
∴EF=$\sqrt{3}$,
∵CE2=2EF2=6,
∴CE=$\sqrt{6}$.
點評 此題考查相似三角形的判定和性質(zhì),正方形的性質(zhì),掌握相似三角形的判定方法是解決問題的前提.
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com