【題目】如圖,在△ABC中,ABAC,點D,E分別是邊AB,AC的中點,連接DE、BE,點FG,H分別為BE,DE,BC的中點.

(1)求證:FGFH;

(2)若∠A90°,求證:FGFH

(3)若∠A80°,求∠GFH的度數(shù).

【答案】(1)證明見解析;(2)證明見解析;(3)GFH100°.

【解析】

1)由中點性質(zhì)及AB=AC,得到BD=EC,再由中位線性質(zhì)證明FGBD,GF=BDFHEC,FH=EC,從而得到FG=FH;

2)由(1FGBDFHEC,再由∠A=90°,可證FGFH;

3)由(1FGBD,∠A=80°,可求得∠FKC,再由FHEC,可求得∠GFH的度數(shù).

(1)ABAC,點D,E分別是邊AB,AC的中點

BDEC

∵點F,GH分別為BE,DE,BC的中點

FGBD,GFBD

FHEC,FHEC

FGFH;

(2)(1)FGBD

又∵∠A90°

FGAC

FHEC

FGFH;

(3)延長FGAC于點K

FGBD,∠A80°

∴∠FKC=∠A80°

FHEC

∴∠GFH180°﹣∠FKC100°

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是正方形ABCD的對角線BD上的一點,連接PA,PC.

(1)證明:∠PAB=∠PCB;

(2)在BC上截取一點E,連接PE,使得PE=PC,連接AE,判斷△PAE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠ABC=∠DEF,AB=DE,要證明△ABC≌△DEF,需要添加一個條件為_______(只添加一個條件即可);

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著通訊技術(shù)迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學興趣小組設(shè)計了你最喜歡的溝通方式調(diào)查問卷(每人必選且只選一種),在全校范圍內(nèi)隨機調(diào)查了部分學生,將統(tǒng)計結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖,請結(jié)合圖中所給的信息解答下列問題:

1)這次統(tǒng)計共抽查了  名學生;在扇形統(tǒng)計圖中,表示“QQ”的扇形圓心角的度數(shù)為   

2)將條形統(tǒng)計圖補充完整;

3)該校共有1500名學生,請估計該校最喜歡用微信進行溝通的學生有多少名?

4)某天甲、乙兩名同學都想從微信、“QQ”電話三種溝通方式中選一種方式與對方聯(lián)系,請用列表或畫樹狀圖的方法求出甲、乙兩名同學恰好選中同一種溝通方式的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某廠準備生產(chǎn)甲、乙兩種商品共8萬件銷往“一帶一路”沿線國家和地區(qū),已知2件甲種商品與3件乙種商品的銷售收入相同,3件甲種商品比2件乙種商品的銷售收入多1500.

1)求甲種商品與乙種商品的銷售單價;

2)設(shè)銷售甲種商品a萬件.

甲、乙兩種商品的銷售總收入為 萬元(用含a的代數(shù)式表示);

若甲、乙兩種商品的銷售總收入不低于5400萬元,則至少銷售甲種商品多少萬件?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按擬定的價格進行試銷,通過對5天的試銷情況進行統(tǒng)計,得到如下數(shù)據(jù):

(1)通過對上面表格中的數(shù)據(jù)進行分析,發(fā)現(xiàn)銷量y(件)與單價(元/件)之間存在一次函數(shù)關(guān)系,求y關(guān)于的函數(shù)關(guān)系式(不需要寫出函數(shù)自變量的取值范圍);

(2)預(yù)計在今后的銷售中,銷量與單價仍然存在(2)中的關(guān)系,且該產(chǎn)品的成本是20元/件.為使工廠獲得最大利潤,該產(chǎn)品的單價應(yīng)定為多少?

(3)為保證產(chǎn)品在實際試銷中銷售量不得低于30件,且工廠獲得得利潤不得低于400元,請直接寫出單價的取值范圍;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】郵遞員騎摩托車從郵局出發(fā),先向東騎行2km到達A村,繼續(xù)向東騎行3km到達B村,然后向西騎行9kmC村,最后回到郵局.

(1)以郵局為原點,以向東方向為正方向,用1個單位長度表示1km,請你在數(shù)軸上表示出A、BC三個村莊的位置;

(2)C村離A村有多遠?

(3)若摩托車每1km耗油0.03升,這趟路共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一個被等分成了3個相同扇形的圓形轉(zhuǎn)盤,3個扇形分別標有數(shù)字1、3、6,指針的位置固定,轉(zhuǎn)動轉(zhuǎn)盤后任其自由停止,其中的某個扇形會恰好停止在指針所指的位置(指針指向兩個扇形的交線時,重新轉(zhuǎn)動轉(zhuǎn)盤).

1)請用畫樹形圖或列表的方法(只選其中一種),表示出分別轉(zhuǎn)動轉(zhuǎn)盤兩次轉(zhuǎn)盤自由停止后,指針所指扇形數(shù)字的所有結(jié)果;

2)求分別轉(zhuǎn)動轉(zhuǎn)盤兩次轉(zhuǎn)盤自由停止后,指針所指扇形的數(shù)字之和的算術(shù)平方根為無理數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,管中放置著三根同樣的繩子AA1、BB1、CC1.小明在左側(cè)選兩個打一個結(jié),小紅在右側(cè)選兩個打一個結(jié),則這三根繩子能連結(jié)成一根長繩的概率為

查看答案和解析>>

同步練習冊答案