順次連接直角梯形四邊中點所得的四邊形是______形.

連接BD,
∵E為AD中點,F(xiàn)為AB中點,
∴EF=
1
2
BD,EFBD,
同理GH=
1
2
BD,GHBD,
∴EFGH,EF=GH,
∴四邊形EFGH是平行四邊形,
故答案為:平行四邊形.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,已知ABDC,AE⊥DC,AE=12,BD=15,AC=20.則梯形ABCD的面積為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

(1)如圖1所示,在四邊形ABCD中,AC=BD,AC與BD相交于點O,E,F(xiàn)分別是AD、BC的中點,連接EF,分別交AC、BD于點M,N,試判斷△OMN的形狀,并加以證明;(提示:利用三角形中位線定理)
(2)如圖2,在四邊形ABCD中,若AB=CD,E,F(xiàn)分別是AD、BC的中點,連接FE并延長,分別與BA,CD的延長線交于點M,N,請在圖2中畫圖并觀察,圖中是否有相等的角?若有,請直接寫出結論:______;
(3)如圖3,在△ABC中,AC>AB,點D在AC上,AB=CD,E,F(xiàn)分別是AD、BC的中點,連接FE并延長,與BA的延長線交于點M,若∠FEC=45°,判斷點M與以AD為直徑的圓的位置關系,并簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知如圖所示,梯形ABCD中ABCD,AD=BC,AC⊥BD,AB=3,CD=5,則梯形的面積是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

問題:已知△ABC中,∠BAC=2∠ACB,點D是△ABC內(nèi)的一點,且AD=CD,BD=BA.探究∠DBC與∠ABC度數(shù)的比值.
請你完成下列探究過程:
先將圖形特殊化,得出猜想,再對一般情況進行分析并加以證明.
(1)當∠BAC=90°時,依問題中的條件補全右圖;
觀察圖形,AB與AC的數(shù)量關系為______;當推出∠DAC=15°時,可進一步推出∠DBC的度數(shù)為______;可得到∠DBC與∠ABC度數(shù)的比值為______;
(2)當∠BAC<90°時,請你畫出圖形,研究∠DBC與∠ABC度數(shù)的比值是否與(1)中的結論相同,寫出你的猜想并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,等腰梯形ABCD中,ADBC,AD=AB=CD,∠B=60°,BC=4,則等腰梯形ABCD的周長是( 。
A.8B.10C.12D.16

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

在平面內(nèi)有線段AB和直線l,點A、B到直線l的距離分別是4cm、6cm.則線段AB的中點C到直線l的距離是( 。
A.1或5B.3或5C.4D.5

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,在梯形ABCD中,AB=BC=10cm,CD=6cm,∠C=∠D=90°.
(1)如圖2,動點P、Q同時以每秒1cm的速度從點B出發(fā),點P沿BA,AD,DC運動到點C停止,點Q沿BC運動到點C停止,設P、Q同時從點B出發(fā)t秒時,△PBQ的面積為y1(cm2),求y1(cm2)關于t(秒)的函數(shù)關系式;
(2)如圖3,動點P以每秒1cm的速度從點B出發(fā)沿BA運動,點E在線段CD上隨之運動,且PC=PE.設點P從點B出發(fā)t秒時,四邊形PADE的面積為y2(cm2),求y2(cm2)關于t(秒)的函數(shù)關系式,并寫出自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,在梯形ABCD中,ADBC,E,F(xiàn)分別是AB,CD邊上的中點,若AD=2,EF=3,則BC=______.

查看答案和解析>>

同步練習冊答案