【題目】完成下面推理過程

如圖,EFAD,1=2,BAC=70°.將求∠AGD的過程填寫完整.

解: 因為EFAD,

所以∠2=____ (_________________________________)

又因為∠1=2

所以∠1=3 (__________________)

所以AB_____ (___________________________________)

所以∠BAC+______=180°(___________________________)

因為∠BAC=70°

所以∠AGD=_______.

【答案】見解析

【解析】

根據(jù)平行線的性質(zhì)推出∠1=2=3,推出ABDG,根據(jù)平行線的性質(zhì)得出∠BAC+AGD=180°,代入求出即可.

因為EFAD

所以∠2=__3__ _兩直線平行,同位角相等_

又因為∠1=2

所以∠1=3 ___等量代換_

所以AB_DG_ __內(nèi)錯角相等,兩直線平行_

所以∠BAC+__AGD _=180°_兩直線平行,同旁內(nèi)角相等_

因為∠BAC=70°

所以∠AGD=_110°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c(a≠0)與x軸交于A(﹣4,0),B(2,0),與y軸交于點C(0,2).

(1)求拋物線的解析式;
(2)若點D為該拋物線上的一個動點,且在直線AC上方,當(dāng)以A、C、D為頂點的三角形面積最大時,求點D的坐標(biāo)及此時三角形的面積;
(3)以AB為直徑作⊙M,直線經(jīng)過點E(﹣1,﹣5),并且與⊙M相切,求該直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知12+22+32++n2nn+1)(2n+1)(n為正整數(shù)).

22+42+62++502的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將直角三角形ACB, ,AC=6,沿CB方向平移得直角三角形DEF,BF=2,DG=,陰影部分面積為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y=mx+n與雙曲線y= 相交于A(﹣1,2)、B(2,b)兩點,與y軸相交于點C.

(1)求m,n的值;
(2)若點D與點C關(guān)于x軸對稱,求△ABD的面積;
(3)在坐標(biāo)軸上是否存在異于D點的點P,使得SPAB=SDAB?若存在,直接寫出P點坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點軸正半軸上,點軸正半軸上連接的長為,其中是不等式的最大整數(shù)解

1)求的長

2)動點以每秒個單位長度的速度在上從點向點運動,設(shè)的長度為運動時間為,請用含的式子表示

3)如圖2,在(2)的條件的下,平分軸于點,點上,點上,連接,且,點與點的縱坐標(biāo)的差為,連接并還延長交過點且與軸垂直的直線于,當(dāng)為何值時,,并求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,ABC中,D、E、F三點分別在ABAC,BC三邊上,過點D的直線與線段EF的交點為點H,∠1+∠2=180°,∠3=∠C

1)求證:DEBC;

2)在以上條件下,若ABCD,E兩點的位置不變,點F在邊BC上運動使得DEF的大小發(fā)生變化,保證點H存在且不與點F重合,探究:要使∠1=∠BFH成立,請說明點F應(yīng)該滿足的位置條件,在圖2中畫出符合條件的圖形并說明理由.

3)在(2)的條件下,若C=α,直接寫出BFH的大小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知在△ABC中,ABACD為線段BC上一點,E為線段AC上一點,且ADAE

(1)若∠ABC60°,∠ADE70°,求∠BAD與∠CDE的度數(shù);

(2)設(shè)∠BADα,∠CDEβ,試寫出α、β之間的關(guān)系并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售一批名牌襯衫,平均每天可售出件,每件盈利元,為擴大銷售增加盈利,盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價一元,市場每天可多售件,問他降價多少元時,才能使每天所賺的利潤最大?并求出最大利潤.

查看答案和解析>>

同步練習(xí)冊答案