【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,動(dòng)點(diǎn)D從點(diǎn)A出發(fā)以每秒3個(gè)單位的速度運(yùn)動(dòng)至點(diǎn)B,過(guò)點(diǎn)D作DE⊥AB交射線AC于點(diǎn)E.設(shè)點(diǎn)D的運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)線段AE的長(zhǎng)為 . (用含t的代數(shù)式表示)
(2)若△ADE與△ACB的面積比為1:4時(shí),求t的值.
(3)設(shè)△ADE與△ACB重疊部分圖形的周長(zhǎng)為L(zhǎng),求L與t之間的函數(shù)關(guān)系式.
(4)當(dāng)直線DE把△ACB分成的兩部分圖形中有一個(gè)是軸對(duì)稱圖形時(shí),直接寫出t的值.
【答案】
(1)5t
(2)
解:方法一:∵ED⊥AB,
∴∠ADE=90°.∵∠ACB=90°,
∴∠ACB=∠ADE.∠A=∠A,
∴△ABC∽△AED,
∴ .
∵AD=3t,AC=3,BC=4,
∴DE=4t.
∴ .
∵ ,
∵ ,
∴ .
∴ (舍)
∴t的值為 .
方法二:∵ED⊥AB,
∴∠ADE=90°.
∵∠ACB=90°,
∴∠ACB=∠ADE.
∵∠A=∠A,
∴△ABC∽△AED,
∵ ,
∴ .
∵AC=3,AD=3t,
∴2×3t=3,t=
(3)
解:由(2)得:△ABC∽△AED,
∴ .
∵AD=3t,
∴DE=4t,AE=5t.BD=5﹣3t,
∴當(dāng) 時(shí),L=3t+4t+5t=12t.
∴L=12t.
當(dāng) 時(shí),如圖,
∵∠B=∠B,∠BDF=∠BCA,
∴△ABC∽△FBD,
∴ .
∵BD=5﹣3t,
∴ .
∵∠BFD=∠EFC,∠BDF=∠ECF,
∴∠B=∠E,
∵∠FCE=∠BCA
∴△BCA∽△ECF,
∴ .
∵CE=5t﹣3,
∴ .
.
∴
(4)
解:由(1)知,AE=5t,DE=4t,
∴CE=3﹣5t,
當(dāng)DE=CE時(shí),四邊形BCED是軸對(duì)稱圖形,
∴4t=3﹣5t,
∴t= ,
當(dāng)DE和BC相交于F,AD=AC時(shí),四邊形ACFE是軸對(duì)稱圖形,
∵AD=3t,AC=3,
∴3t=3,
∴t=1.
即:滿足條件的時(shí)間t為 或1
【解析】解:(1)在Rt△ABC中,tanA= =
由題意得,AD=3t,
在Rt△ADE中,tanA= = = ,
根據(jù)勾股定理得,AE=5t.
所以答案是5t;
【考點(diǎn)精析】根據(jù)題目的已知條件,利用勾股定理的概念和相似三角形的判定的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;相似三角形的判定方法:兩角對(duì)應(yīng)相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似; 兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似(SAS);三邊對(duì)應(yīng)成比例,兩三角形相似(SSS).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市在城市建設(shè)中,要折除舊煙囪AB(如圖所示),在煙囪正西方向的樓CD的頂端C,測(cè)得煙囪的頂端A的仰角為45°,底端B的俯角為30°,已量得DB=21m.
(1)在原圖上畫出點(diǎn)C望點(diǎn)A的仰角和點(diǎn)C望點(diǎn)B的俯角,并分別標(biāo)出仰角和俯角的大小;
(2)拆除時(shí)若讓煙囪向正東倒下,試問(wèn):距離煙囪正東35m遠(yuǎn)的一棵大樹(shù)是否被歪倒的煙囪砸著?請(qǐng)說(shuō)明理由.(≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程2x2﹣(4k+2)x+2k2+1=0.
(1)當(dāng)k取何值時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根?
(2)當(dāng)k取何值時(shí),方程有兩個(gè)相等的實(shí)數(shù)根?
(3)當(dāng)k取何值時(shí),方程沒(méi)有實(shí)數(shù)根?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC,△ADE是等邊三角形,B,C,D在同一直線上.
求證:(1)CE=AC+CD;(2)∠ECD=60°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列計(jì)算錯(cuò)誤的是( )
A. (-2)0=1 B. 28x4y2÷7x3=4xy2
C. (4xy2-6x2y+2xy)÷2xy=2y-3x D. (a-5)(a+3)=a2-2a-15
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某開(kāi)發(fā)商要建一批住房,經(jīng)調(diào)查了解,若甲、乙兩隊(duì)分別單獨(dú)完成,則乙隊(duì)完成的天數(shù)是甲隊(duì)的1.5倍;若甲、乙兩隊(duì)合作,則需120天完成.
(1)甲、乙兩隊(duì)單獨(dú)完成各需多少天?
(2)施工過(guò)程中,開(kāi)發(fā)商派兩名工程師全程監(jiān)督,需支付每人每天食宿費(fèi)150元.已知乙隊(duì)單獨(dú)施工,開(kāi)發(fā)商每天需支付施工費(fèi)為10000元.現(xiàn)從甲、乙兩隊(duì)中選一隊(duì)單獨(dú)施工,若要使開(kāi)發(fā)商選甲隊(duì)支付的總費(fèi)用不超過(guò)選乙隊(duì)的,則甲隊(duì)每天的施工費(fèi)最多為多少元?(總費(fèi)用=施工費(fèi)+工程師食宿費(fèi))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象與x軸交于(x1 , 0),(x2 , 0)兩點(diǎn),且0<x1<1,1<x2<2,與y軸交于(0,﹣2).下列結(jié)論:①2a+b>1; ②a+b>2;③a﹣b<2;④3a+b>0; ⑤a<﹣1.其中正確結(jié)論的個(gè)數(shù)為( )
A.2
B.3
C.4
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABE中,∠A=105°,AE的垂直平分線MN交BE于點(diǎn)C,且AB+BC=BE,則∠B的度數(shù)是( 。
A. 45° B. 60° C. 50° D. 55°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com