【題目】以邊長(zhǎng)為2的正方形的中心O為端點(diǎn),引兩條相互垂直的射線,分別與正方形的邊交于A、B兩點(diǎn),則線段AB的最小值是

【答案】

【解析】

解:

四邊形CDEF是正方形,

∴∠OCD=∠ODB=45°,∠COD=90°,OC=OD,

∵AO⊥OB

∴∠AOB=90°,

∴∠CAO+∠AOD=90°,∠AOD+∠DOB=90°,

∴∠COA=∠DOB

△COA△DOB

,

∴△COA≌△DOB

∴OA=OB,

∵∠AOB=90°

∴△AOB是等腰直角三角形,

由勾股定理得:AB==OA,

要使AB最小,只要OA取最小值即可,

根據(jù)垂線段最短,OA⊥CD時(shí),OA最小,

正方形CDEF

∴FC⊥CD,OD=OF,

∴CA=DA,

∴OA=CF=1,

AB=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在對(duì)全市初中生的體質(zhì)健康測(cè)試中,青少年體質(zhì)研究中心隨機(jī)抽取的10名女生的立定跳遠(yuǎn)的成績(jī)(單位:厘米)如下:123,191,216,191,159,206,191,210,186,227.

(1)通過(guò)計(jì)算,樣本數(shù)據(jù)(10名女生的成績(jī))的平均數(shù)是190厘米,中位數(shù)是多少厘米?眾數(shù)是多少厘米?

(2)本市一初中女生的成績(jī)是194厘米,你認(rèn)為她的成績(jī)?nèi)绾?說(shuō)明理由;

(3)研究中心分別確定了一個(gè)標(biāo)準(zhǔn)成績(jī),等于或大于這個(gè)成績(jī)的女學(xué)生該項(xiàng)素質(zhì)分別被評(píng)定為合格”、“優(yōu)秀等級(jí),其中合格的標(biāo)準(zhǔn)為大多數(shù)女生能達(dá)到,優(yōu)秀的標(biāo)準(zhǔn)為全市有一半左右的學(xué)生能夠達(dá)到,你認(rèn)為標(biāo)準(zhǔn)成績(jī)分別定為多少?說(shuō)明理由;按擬定的合格標(biāo)準(zhǔn),估計(jì)該市4650人中有多少人在合格以上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小王家距上班地點(diǎn)18千米,他用乘公交車(chē)的方式平均每小時(shí)行駛的路程比他用自駕車(chē)的方式平均每小時(shí)行駛的路程的2倍還9千米.他從家出發(fā)到達(dá)上班地點(diǎn),乘公交車(chē)方式所用時(shí)間是自駕車(chē)方式所用時(shí)間的.小王用自駕車(chē)方式上班平均每小時(shí)行駛(  )

A. 26千米 B. 27千米 C. 28千米 D. 30千米

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AC=BC=5,AB=6,將它沿AB翻折得到△ABD,點(diǎn)P、E、F分別為線段AB、AD、DB的任意點(diǎn),則PE+PF的最小值是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,分析下列四個(gè)結(jié)論: ①abc<0;②b2﹣4ac>0;③3a+c>0;④(a+c)2<b2 ,
其中正確的結(jié)論有(

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算下列各題
(1)計(jì)算: ﹣( 1+(π﹣ 0﹣(﹣1)100;
(2)已知|a+1|+(b﹣3)2=0,求代數(shù)式( )÷ 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E是對(duì)角線AC上一點(diǎn),且CE=CD,過(guò)點(diǎn)E作EF⊥AC交AD于點(diǎn)F,連接BE.
(1)求證:DF=AE;
(2)當(dāng)AB=2時(shí),求BE2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,∠ABC90°ABBC,直線l1l2、l3分別通過(guò)AB、C三點(diǎn),且l1l2l3.若l1l2的距離為4,l2l3的距離為6,則RtABC的面積為___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,點(diǎn)O在對(duì)角線AC上,以O(shè)A的長(zhǎng)為半徑的圓O與AD、AC分別交于點(diǎn)E、F,且∠ACB=∠DCE.
(1)判斷直線CE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若tan∠ACB= ,BC=2,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案