【題目】如圖,以RtABC的直角邊AB為直徑作半圓⊙O與邊BC交于點D,過D作半圓的切線與邊AC交于點E,過EEFAB,與BC交于點F.若AB20,OF7.5,則CD的長為( 。

A.7B.8C.9D.10

【答案】C

【解析】

連結(jié)AD,先證明EAC的中點,可知EF、OF是△ABC的中位線,于是可求出ACBC的長,再證明△CDA∽△CAB,根據(jù)相似的性質(zhì)即可求出CD的長.

解:連結(jié)AD,如圖,

∵∠BAC90°,AB為直徑,

AC是⊙O的切線,

DE為⊙O的切線,

EDEA,

∴∠ADE=∠2,

AB為直徑,

∴∠ADB90°,

∴∠1+ADE90°,∠2+C90°

∴∠1=∠C,

EDEC

CEAE,

EFAB,

EF為△ABC的中位線,

BFCF,

BOAO,

OF為△ABC的中位線,

OFAE,

AEOF7.5,

AC2AE15,

RtACD中,BC25,

∵∠DCA=∠ACB

∴△CDA∽△CAB,

,即,

CD9

故選:C

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】某花圃銷售一批名貴花卉,平均每天可售出20盆,每盆盈利40元,為了增加盈利并盡快減少庫存,花圃決定采取適當?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每盆花卉每降1元,花圃平均每天可多售出2盆.

1)若花圃平均每天要盈利1200元,每盆花卉應(yīng)降價多少元?

2)每盆花卉降低多少元時,花圃平均每天盈利最多,是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:在直角中,,點在邊上,且如果將沿所在的直線翻折,點恰好落在邊上的點處,點邊上的一個動點,聯(lián)結(jié),以圓心,為半徑作⊙,交線段于點和點,作交⊙于點,交線段于點

1)求點到點和直線的距離

2)如果點平分劣弧,求此時線段的長度

3)如果為等腰三角形,以為圓心的⊙與此時的⊙相切,求⊙的半徑

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題中,假命題是(

A.順次聯(lián)結(jié)任意四邊形四邊中點所得的四邊形是平行四邊形

B.順次聯(lián)結(jié)對角線相等的四邊形四邊中點所得的四邊形是菱形

C.順次聯(lián)結(jié)對角線互相垂直的四邊形四邊中點所得的四邊形是矩形

D.順次聯(lián)結(jié)兩組鄰邊互相垂直的四邊形四邊中點所得的四邊形是矩形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店以40元/千克的單價新進一批茶葉,經(jīng)調(diào)查發(fā)現(xiàn),在一段時間內(nèi),銷售量y(千克與銷售單價x(元/千克之間的函數(shù)關(guān)系如圖所示.

(1)根據(jù)圖象,yx的函數(shù)關(guān)系式;

(2)商店想在銷售成本不超過3000元的情況下,使銷售利潤達到2400元,問銷售單價應(yīng)定為多少元

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,以為邊在的另一側(cè)作,點為射線上任意一點,在射線上截取,連接

1)如圖1,當點落在線段的延長線上時,直接寫出的度數(shù);

2)如圖2,當點落在線段(不含邊界)上時,于點,請問(1)中的結(jié)論是否仍成立?如果成立,請給出證明;如果不成立,請說明理由;

3)在(2)的條件下,若,求的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,的中點.動點從點出發(fā)以每秒個單位向終點勻速運動(點不與、重合),過點的垂線交折線于點.以、為鄰邊構(gòu)造矩形.設(shè)矩形重疊部分圖形的面積為,點的運動時間為秒.

1)直接寫出的長(用含的代數(shù)式表示);

2)當點落在的邊上時,求的值;

3)當矩形重疊部分圖形不是矩形時,求的函數(shù)關(guān)系式,并寫出的取值范圍;

4)沿直線將矩形剪開,得到兩個圖形,用這兩個圖形拼成不重疊且無縫隙的圖形恰好是三角形.請直接寫出所有符合條件的的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩名工人分別加工a個同種零件.甲先加工一段時間,由于機器故障進行維修后繼續(xù)按原來的工作效率進行加工,當甲加工小時后.乙開始加工,乙的工作效率是甲的工作效率的3倍.下圖分別表示甲、乙加工零件的數(shù)量y(個)與甲工作時間x(時)的函數(shù)圖象.解讀信息:

(1)甲的工作效率為  /時,維修機器用了  小時

(2)乙的工作效率是  /時;問題解決

①乙加工多長時間與甲加工的零件數(shù)量相同,并求此時乙加工零件的個數(shù);

②若乙比甲早10分鐘完成任務(wù),求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,燈塔A周圍1000米水域內(nèi)有礁石,一艦艇由西向東航行,在O處測得燈塔A在北偏東74°方向線上,這時O、A相距4200米,如果不改變航向,此艦艇是否有觸礁的危險?(指定數(shù)學課使用科學計算器的地區(qū)的考生須使用計算器計算.以下數(shù)據(jù)供計算器未進入考場的地區(qū)的考生選用:cos74°=0.2756,sin74°=0.9613cot74°=0.2867,tan74°=3.487)

查看答案和解析>>

同步練習冊答案