在平面直角坐標(biāo)系xOy中,已知拋物線與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸的正半軸于點(diǎn)C,其頂點(diǎn)為M,MH⊥x軸于點(diǎn)H,MA交y軸于點(diǎn)N,sin∠MOH=.
(1)求此拋物線的函數(shù)表達(dá)式;
(2)過H的直線與y軸相交于點(diǎn)P,過O,M兩點(diǎn)作直線PH的垂線,垂足分別為E,F,若 =時,求點(diǎn)P的坐標(biāo);
(3)將(1)中的拋物線沿y軸折疊,使點(diǎn)A落在點(diǎn)D處,連接MD,Q為(1)中的拋物線上的一動點(diǎn),直線NQ交x軸于點(diǎn)G,當(dāng)Q點(diǎn)在拋物線上運(yùn)動時,是否存在點(diǎn)Q,使△ANG 與△ADM相似?若存在,求出所有符合條件的直線QG的解析式;若不存在,請說明理由
解:(1)∵ M為拋物線的頂點(diǎn),
∴M(2,c).∴OH=2,MH=|c|.∵a<0,且拋物線與x軸有交點(diǎn),∴c>0,∴MH=c.
∵sin∠MOH=,∴.∴OM=,∵,∴MH=c=4.∴M(2,4).∴拋物線的函數(shù)表達(dá)式為:.
(2)如圖1,∵OE⊥PH,MF⊥PH,MH⊥OH.
∴∠EHO=∠FMH,∠OEH=∠HFM.∴△OEH∽△HFM.
∴==.∵=,∴MF=HF.
∴∠OHP=∠FHM=45°.∴OP=OH=2,∴P(0,2).
如圖2,同理可得,P(0,﹣2).-
(3)∵A(-1,0),∴D(1,0).
∵M(2,4),D(1,0),∴MD:.∵ON∥MH,∴△AON∽△AHM,∴,∴AN=,ON=,N(0,).
如圖3,若△ANG ∽ △AMD,可得NG∥MD,∴QG:.
如圖4,若△ANG ∽ △ADM,可得,.
∴AG=,∴G(,0),∴QG:;
綜上所述,符合條件的所有直線QG的解析式為:或.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
某德陽特產(chǎn)專賣店銷售“中江柚”,已知“中江柚”的進(jìn)價為每個10元,現(xiàn)在的售價是每個16元,每天可賣出120個.市場調(diào)查反映:如調(diào)整價格,每漲價1元,每天要少賣出10個;每降價1元,每天可多賣出30個.
(1)如果專賣店每天要想獲得770元的利潤,且要盡可能的讓利給顧客,那么售價應(yīng)漲價多少元?
(2)請你幫專賣店老板算一算,如何定價才能使利潤最大,并求出此時的最大利潤?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知,在同一直角坐標(biāo)系中,反比例函數(shù)與二次函數(shù)的圖像交于點(diǎn).
(1)求、的值;
(2)求二次函數(shù)圖像的對稱軸和頂點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
已知兩圓的半徑長是方程的兩個解,且兩圓的圓心距為d,若兩圓相離,則下列結(jié)論正確的是( )
A.0<d<2 B. d>10 C. 0≤d<2或d>10 D.0<d<2或d>10
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com