【題目】某校對九年級全體學生進行了一次學業(yè)水平測試,成績評定分為A,B,C,D四個等級(A,B,C,D分別代表優(yōu)秀、良好、合格、不合格)該校從九年級學生中隨機抽取了一部分學生的成績,繪制成以下不完整的統(tǒng)計圖.請你根據(jù)統(tǒng)計圖提供的信息解答下列問題;

(1)本次調查中,一共抽取了__名學生的成績;

(2)將上面的條形統(tǒng)計圖補充完整,寫出扇形統(tǒng)計圖中等級C的百分比__

(3)若等級D5名學生的成績(單位:分)分別是55、48、57、51、55.則這5個數(shù)據(jù)的中位數(shù)是__分,眾數(shù)是__分.

(4)如果該校九年級共有500名學生,試估計在這次測試中成績達到優(yōu)秀的人數(shù)__

【答案】50,30%,55,55,100

【解析】

(1)根據(jù)等級B中男女人數(shù)之和除以所占的百分比即可得到調查的總學生數(shù);
(2)根據(jù)總學生數(shù)乘以A占的百分比求出等級A中男女的學生總數(shù),進而求出等級A男生的人數(shù),求出等級D占的百分比,確定出等級C占的百分比,乘以總人數(shù)求出等級C的男女之和人數(shù),進而求出等級C的女生人數(shù),補全條形統(tǒng)計圖即可;
(3)將等級D的五人成績按照從小到大的順序排列,找出最中間的數(shù)字即為中位數(shù),找出出現(xiàn)次數(shù)最多的數(shù)字為眾數(shù);
(4)用500乘以等級A所占的百分比,即可得到結果.

(1)根據(jù)題意得:(12+8)÷40%=50(),

則本次調查了50名學生的成績;

(2)等級A的學生數(shù)為50×20%=10(),即等級A男生為4人;

∵等級D占的百分比為

∴等級C占的百分比為1(40%+20%+10%)=30%,

∴等級C的學生數(shù)為50×30%=15(),即女生為7人,

補全條形統(tǒng)計圖,如圖所示:

(3)5個數(shù)據(jù)重新排列為48、51、55、55、57,

則這5個數(shù)據(jù)的中位數(shù)是55,眾數(shù)為55,

故答案為:55,55;

(4)根據(jù)題意得:500×20%=100(),

則在這次測試中成績達到優(yōu)秀的人數(shù)有100人.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如果一個多邊形的各邊都相等且各角也都相等,那么這樣的多邊形叫做正多邊形,如正三角形就是等邊三角形,正四邊形就是正方形,如下圖,就是一組正多邊形,

(1)觀察上面每個正多邊形中的∠α,填寫下表:

正多邊形邊數(shù)

3

4

5

6

……

n

α的度數(shù)

______°

_____°

______°

______°

……

_____°

(2)根據(jù)規(guī)律,計算正八邊形中的∠α的度數(shù).

(3)是否存在正n邊形使得∠α=21°?若存在,請求出n的值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,BDABC的角平分線,DEAB,DFBC垂足分別為E、F

1)求證:BE=BF

2)若ABC的面積為70,AB=16DE=5,則BC=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,ABC=30°,CDE是等邊三角形,點D在邊AB上.

(1)如圖1,當點E在邊BC上時,求證DE=EB;

(2)如圖2,當點E在△ABC內部時,猜想EDEB數(shù)量關系,并加以證明;

(3)如圖3,當點E在△ABC外部時,EHAB于點H,過點EGEAB,交線段AC的延長線于點G,AG=5CG,BH=3.求CG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,點D、E分別是邊AB、AC的中點,∠B=50°,A=26°,將ABC沿DE折疊,點A的對應點是點A′,則∠AEA′的度數(shù)是( 。

A. 145° B. 152° C. 158° D. 160°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,BA=BC,D在邊CB上,且DB=DA=AC

1)如圖1,填空∠B= °,∠C= °;

2)若M為線段BC上的點,過M作直線MH⊥ADH,分別交直線ABAC與點N、E,如圖2

求證:△ANE是等腰三角形;

試寫出線段BN、CECD之間的數(shù)量關系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,ACBD相交于點O,點EOA的中點,連接BE并延長交AD于點F,已知SAEF=4,則下列結論:①;SBCE=36;SABE=12;④△AEFACD,其中一定正確的是(  )

A. ①②③④ B. ①④ C. ②③④ D. ①②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,在平面直角坐標系中

1作出ABC關于軸對稱的并寫出三個頂點的坐標 ( 。,(  ),( 。;

2直接寫出ABC的面積為

3軸上畫點P,使PA+PC最小

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在下列條件中,不能證明ABD≌△ACD的是( ).

A.BD=DC, AB=AC B.ADB=ADC,BD=DC

C.B=CBAD=CAD D. B=C,BD=DC

查看答案和解析>>

同步練習冊答案