【題目】如圖,在△ABC中,AB=4,AC=6,∠ABC和∠ACB的平分線交于點E,過點E作MN∥BC分別交AB、AC于M、N,則△AMN的周長為( 。
A. 10 B. 6 C. 4 D. 不確定
科目:初中數(shù)學 來源: 題型:
【題目】中國式過馬路,是網(wǎng)友對部分中國人集體闖紅燈現(xiàn)象的一種調(diào)侃,即“湊夠一撮人就可以走了,和紅綠燈無關”針對這種現(xiàn)象某媒體記者在多個路口采訪闖紅燈的行人,得出形成這種現(xiàn)象的四個基本原因,①紅綠燈設置不科學,交通管理混亂占1%;②僥幸心態(tài);③執(zhí)法力度不夠占9%;④從眾心理,該記者將這次調(diào)查情況整理并繪制了如下尚不完整的統(tǒng)計圖,請根據(jù)相關信息,解答下列問題.
(1)該記者本次一共調(diào)査了名行人;
(2)求圖1中④所在扇形的圓心角,并補全圖2;
(3)在本次調(diào)查中,記者隨機采訪其中的一名行人,求他屬于第②種情況的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校要求八年級同學在課外活動中,必須在五項球類(籃球、足球、排球、羽毛球、乒乓球)活動中任選一項(只能選一項)參加訓練,為了了解八年級學生參加球類活動的整體情況,現(xiàn)以八年級2班作為樣本,對該班學生參加球類活動的情況進行統(tǒng)計,并繪制了如圖所示的不完整統(tǒng)計表和扇形統(tǒng)計圖:
八年級2班參加球類活動人數(shù)統(tǒng)計表 | |||||
項目 | 籃球 | 足球 | 乒乓球 | 排球 | 羽毛球 |
人數(shù) | a | 6 | 5 | 7 | 6 |
根據(jù)圖中提供的信息,解答下列問題:
(1)a= , b=;
(2)該校八年級學生共有600人,則該年級參加足球活動的人數(shù)約 人;
(3)該班參加乒乓球活動的5位同學中,有3位男同學(A,B,C)和2位女同學(D,E),現(xiàn)準備從中選取兩名同學組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一副三角板按如圖放置,下列結論:①∠1=∠3;②若BC∥AD,則∠4=∠3;③若∠2=15°,必有∠4=2∠D;④若∠2=30°,則有AC∥DE. 其中正確的有_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知CD⊥DA,DA⊥AB,∠1=∠2. 試說明DF∥AE. 請你完成下列填空,把解答過程補充完整.
解:∵CD⊥DA,DA⊥AB,
∴∠CDA=90°,∠DAB=90°( ).
∴∠CDA=∠DAB(等量代換).
又∠1=∠2,
從而∠CDA-∠1=∠DAB-________(等式的性質(zhì)).
即∠3=_______.
∴DF∥AE( ).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,過點A作AE⊥BC于點E,AF⊥DC于點F,AE=AF.
(1)求證:四邊形ABCD是菱形;
(2)若∠EAF=60°,CF=2,求AF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解答題
定義:把四邊形的某些邊向兩方延長,其他各邊有不在延長所得直線的同一旁,這樣的四邊形叫做凹四邊形.如圖1,四邊形ABCD為凹四邊形.
(1)性質(zhì)探究:請完成凹四邊形一個性質(zhì)的證明.
已知:如圖2,四邊形ABCD是凹四邊形.
求證:∠BCD=∠B+∠A+∠D.
(2)性質(zhì)應用:
如圖3,在凹四邊形ABCD中,∠BAD的角平分線與∠BCD的角平分線交于點E,若∠ADC=140°,∠AEC=102°,則∠B=°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知:在△ABC中,∠ACB=90°,CD為高,且CD、CE三等分∠ACB.
(1)求∠B的度數(shù).
(2)求證:CE是AB邊上的中線,且.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長是16,點E在邊AB上,AE=3,動點F在邊BC上,且不與點B、C重合,將△EBF沿EF折疊,得到△EB′F.
(1)當∠BEF=45°時,求證:CF=AE;
(2)當B′D=B′C時,求BF的長;
(3)求△CB′F周長的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com