【題目】直線ykx+b經(jīng)過點A0,3)和點B4,a),且點B在正比例函數(shù)yx的圖象上.

1)求a的值.

2)求kb的值,并在給定的坐標系內(nèi)畫出這條直線.

3)如果點C,y1)和點D(﹣y2)都在這條直線上,請比較y1y2的大。

【答案】1a1;(2,圖見解析;(3y1y2

【解析】

1)把B點的橫縱坐標代入正比例函數(shù)解析式,即可求出a的值;

2)把A、B點的坐標代入ykx+b得到關于kb的方程組,求出k,b的值,即可得到,一次函數(shù)的解析式,然后利用描點法畫出直線ykx+b

3)利用一次函數(shù)的性質(zhì),即可比較y1,y2的大。

1)∵點B在正比例函數(shù)yx的圖象上,

∴把B4a)代入yx中,得a1;

2)∵直線ykx+b經(jīng)過點A03)和點B4,1),

∴把A03),B4,1)代入ykx+b ,解得,

∴直線解析式為y=﹣x+3;

如圖所示:

3)∵直線解析式為y=﹣x+3,

k=<0

yx的增大而減小,

+ >﹣,

y1y2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠ABC=∠ACB,BDCD、BE分別平分ABC的內(nèi)角∠ABC、外角∠ACP、外角∠MBC,以下結(jié)論:①ADBC;②DBBE;③∠BDC+ABC90°;④∠A+2BEC180°.其中正確的結(jié)論有_____.(填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,RtABC的直角邊ACx軸上,∠ACB=90°,AC=1,反比例函數(shù)y=(k>0)的圖象經(jīng)過BC邊的中點D(3,1).

(1)求這個反比例函數(shù)的表達式;

(2)若ABCEFG成中心對稱,且EFG的邊FGy軸的正半軸上,點E在這個函數(shù)的圖象上.

①求OF的長;

②連接AF,BE,證明四邊形ABEF是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲種污水處理器處理25噸的污水與乙種污水處理器處理35噸的污水所用的時間相同,已知乙種污水處理器每小時比甲種污水處理器多處理20噸的污水.

1)分別求甲、乙兩種污水處理器的污水處理效率;

2)若某廠每天同時開甲、乙兩種污水處理器處理污水共4小時,且甲、乙兩種污水處理器處理污水每噸需要的費用分別30元和50元,問該廠每個月(以30天計)需要污水處理費多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某加工廠以每噸3000元的價格購進50噸原料進行加工,若進行粗加工,每噸加工費用為600元,需天,每噸售價4000元;若進行精加工,每噸加工費為900元,需天,每噸售價4500元,現(xiàn)將這50噸原料全部加工完。(兩種加工方式不能同時進行)

(1)設其中粗加工x噸,獲利y元,求y與x的函數(shù)關系式(不要求寫自變量的范圍);

(2)如果必須在20天內(nèi)完成,如何安排生產(chǎn)才能獲得最大的利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線的對稱軸是x=-4,拋物線與x軸交于A,B兩點,與y軸交于C點,O是坐標原點,且A,C的坐標分別是(-2,0),(0,3).

(1)求拋物線的解析式;

(2)拋物線上有一點是P,滿足∠PBC=90,求P點的坐標;

(3)y軸上是否存在點E使得△AOE與△PBC相似?若存在求出點E的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在等邊三角形ABC中,點D,E分別在邊BC,AC上,DEAB,過點EEFDE,交BC的延長線于點F

1)求∠F的度數(shù);

2)若CD4,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,O是坐標原點,長方形OACB的頂點A、B分別在x軸與y軸上,已知OA=6,OB=10.點Dy軸上一點,其坐標為(0,2),點P從點A出發(fā)以每秒2個單位的速度沿線段AC﹣CB的方向運動,當點P與點B重合時停止運動,運動時間為t秒.

(1)當點P經(jīng)過點C時,求直線DP的函數(shù)解析式;

(2)①求△OPD的面積S關于t的函數(shù)解析式;

②如圖②,把長方形沿著OP折疊,點B的對應點B′恰好落在AC邊上,求點P的坐標.

(3)P在運動過程中是否存在使△BDP為等腰三角形?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC,按以下步驟作圖:①分別以 BC 為圓心,以大于BC 的長為半徑作弧,兩弧相交于兩點 M,N;②作直線 MN AB 于點 D,連接 CD.若 CD=AC,∠A=50°,則∠ACB 的度數(shù)為

A.90°B.95°C.105°D.110°

查看答案和解析>>

同步練習冊答案