【題目】如圖,攔水壩的橫斷面為梯形ABCD,AB∥CD,壩頂寬DC為6米,壩高DG為2米,迎水坡BC的坡角為30°,壩底寬AB為(8+2 )米.
(1)求背水坡AD的坡度;
(2)為了加固攔水壩,需將水壩加高2米,并且保持壩頂寬度不變,迎水坡和背水坡的坡度也不變,求加高后壩底HB的寬度.
【答案】
(1)解:如圖,過點(diǎn)C作CP⊥AB于點(diǎn)P,
則四邊形CDGP是矩形,
∴CP=DG=2,CD=GP=6,
∵∠B=30°,
∴BP= = =2 ,
∴AG=AB﹣GP﹣BP=8+2 ﹣6﹣2 =2=DG,
∴背水坡AD的坡度DG:AG=1:1;
(2)解:由題意知EF=MN=4,ME=CD=6,∠B=30°,
則BF= = =4 ,HN= = =4,NF=ME=6,
∴HB=HN+NF+BF=4+6+4 =10+4 ,
答:加高后壩底HB的寬度為(10+4 )米.
【解析】(1)作CP⊥AB于點(diǎn)P,即可知四邊形CDGP是矩形,從而得CP=DG=2、CD=GP=6,由BP= =2 根據(jù)AG=AB﹣GP﹣BP可得DG:AG=1:1;(2)根據(jù)題意得EF=MN=4、ME=CD=6、∠B=30°,由BF= 、HN= 、NF=ME,根據(jù)HB=HN+NF+BF可得答案.
【考點(diǎn)精析】關(guān)于本題考查的梯形的定義,需要了解一組對(duì)邊平行,另一組對(duì)邊不平行的四邊形是梯形.兩腰相等的梯形是等腰梯形才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線C1:y=a1x2+b1x+c1和C2:y=a2x2+b2x+c2都經(jīng)過原點(diǎn),頂點(diǎn)分別為A,B,與x軸的另一交點(diǎn)分別為M,N,如果點(diǎn)A與點(diǎn)B,點(diǎn)M與點(diǎn)N都關(guān)于原點(diǎn)O成中心對(duì)稱,則稱拋物線C1和C2為姐妹拋物線,請(qǐng)你寫出一對(duì)姐妹拋物線C1和C2 , 使四邊形ANBM恰好是矩形,你所寫的一對(duì)拋物線解析式是和 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校七,八年級(jí)學(xué)生的睡眠情況,隨機(jī)抽取了該校七,八年級(jí)部分學(xué)生進(jìn)行調(diào)查,已知抽取七年級(jí)與八年級(jí)的學(xué)生人數(shù)相同,利用抽樣所得的數(shù)據(jù)繪制如下統(tǒng)計(jì)圖表.
睡眠情況分組表(單位:時(shí))
組別 | 睡眠時(shí)間x |
A | x≤7.5 |
B | 7.5≤x≤8.5 |
C | 8.5≤x≤9.5 |
D | 9.5≤x≤10.5 |
E | x≥10.5 |
根據(jù)圖表提供的信息,回答下列問題:
(1)求統(tǒng)計(jì)圖中的a;
(2)抽取的樣本中,八年級(jí)學(xué)生睡眠時(shí)間在C組的有多少人?
(3)已知該校七年級(jí)學(xué)生有755人,八年級(jí)學(xué)生有785人,如果睡眠時(shí)間x(時(shí))滿足:7.5≤x≤9.5,稱睡眠時(shí)間合格,試估計(jì)該校七、八年級(jí)學(xué)生中睡眠時(shí)間合格的共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】作為寧波市政府民生實(shí)事之一的公共自行車建設(shè)工作已基本完成,某部門對(duì)今年4月份中的7天進(jìn)行了公共自行車日租車量的統(tǒng)計(jì),結(jié)果如圖:
(1)求這7天日租車量的眾數(shù)、中位數(shù)和平均數(shù);
(2)用(1)中的平均數(shù)估計(jì)4月份(30天)共租車多少萬車次;
(3)市政府在公共自行車建設(shè)項(xiàng)目中共投入9600萬元,估計(jì)2014年共租車3200萬車次,每車次平均收入租車費(fèi)0.1元,求2014年租車費(fèi)收入占總投入的百分率(精確到0.1%).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等腰三角形的腰長為6cm,底邊長為4cm,以等腰三角形的頂角的頂點(diǎn)為圓心5cm為半徑畫圓,那么該圓與底邊的位置關(guān)系是( )
A.相離
B.相切
C.相交
D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=3,BC=2,點(diǎn)D是邊AB上的動(dòng)點(diǎn),過點(diǎn)D作DE∥BC,交邊AC于點(diǎn)E,點(diǎn)Q是線段DE上的點(diǎn),且QE=2DQ,連接BQ并延長,交邊AC于點(diǎn)P.設(shè)BD=x,AP=y.
(1)求y關(guān)于x的函數(shù)解析式及定義域;
(2)當(dāng)△PQE是等腰三角形時(shí),求BD的長;
(3)連接CQ,當(dāng)∠CQB和∠CBD互補(bǔ)時(shí),求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ABC=90°,AC=5,BC=3,CD是∠ACB的平分線,將△ABC沿直線CD翻折,點(diǎn)A落在點(diǎn)E處,那么AE的長是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,AD=3,BC=2,點(diǎn)E、F分別在兩腰上, 且EF∥AD,AE:EB=2:1;
(1)求線段EF的長;
(2)設(shè) = , = ,試用 、 表示向量 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校綜合實(shí)踐活動(dòng)小組的同學(xué)欲測量公園內(nèi)一棵樹DE的高度,他們在這棵樹正前方一座樓亭前的臺(tái)階上A點(diǎn)處測得樹頂端D的仰角為30°,朝著這棵樹的方向走到臺(tái)階下的點(diǎn)C處,測得樹頂端D的仰角為60°.已知A點(diǎn)的高度AB為2m,臺(tái)階AC的傾斜角∠ACB為30°,且B、C、E三點(diǎn)在同一條直線上.請(qǐng)根據(jù)以上條件求出樹DE的高度(測傾器的高度忽略不計(jì)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com