【題目】網(wǎng)絡時代,新興詞匯層出不窮.為了解大眾對網(wǎng)絡詞匯的理解,某興趣小組舉行了一個我是路人甲的調查活動:選取四個熱詞A硬核人生B好嗨哦,C雙擊666”,D杠精時代在街道上對流動人群進行了抽樣調查,要求被調查的每位只能勾選一個最熟悉的熱詞,根據(jù)調查結果,該小組繪制了如下的兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:

(1)本次調查中,一共調查了   名路人.

(2)補全條形統(tǒng)計圖;

(3)扇形圖中的b=   

【答案】(1) 300 (2) 補全的條形統(tǒng)計圖見解析;(3) 90

【解析】

1)根據(jù)扇形統(tǒng)計圖中A的角度可求得A的比例,讀出條形統(tǒng)計圖中A的人數(shù),計算求得樣本容量;

2)根據(jù)樣本容量×比例=人數(shù)這個公式,求出選D的人數(shù),然后用總人數(shù)減去A、BD的人數(shù)得到C的人數(shù),最后繪圖;

3)用B的比例乘360°即可

解:(1)本次調查中,一共調查了:120÷=300(),

故答案為:300;

(2)D的有:300×=90()

C的有3001207590=15()

補全的條形統(tǒng)計圖如右圖所示:

(3)b°=360°×=90°,

b=90

故答案為:90

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ORtABC斜邊中點,AB=10BC=6,MNAC邊上,∠MON=B,若△OMN與△OBC相似,則CM=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)的圖象與軸交于點,對稱軸為直線,下列結論:①;②9a+3b+c=0;③若點,點是此函數(shù)圖象上的兩點,則;④.其中正確的個數(shù)(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《孫子算經(jīng)》是中國古代重要的數(shù)學著作,其中記載:“今有甲、乙二人,持錢各不知數(shù).甲得乙中半,可滿四十八;乙得甲太半,亦滿四十八。問甲、乙二人原持錢各幾何?”譯文:“甲,乙兩人各有若干錢,如果甲得到乙所有錢的一半,那么甲共有錢48文,如果乙得到甲所有錢的,那么乙也共有錢48文,問甲、乙二人原來各有多少錢?”

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象開口向上,圖象經(jīng)過點(1,2)(1,0),且與y軸相交于負半軸,給出五個結論:①a+b+c=0,②abc0,③2a+b0,④a+c=1,⑤當﹣1x1時,y0;其中正確的結論的序號(  )

A.①③⑤B.②③④C.①③④D.②③⑤

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線經(jīng)過A(20),B(0,2)C(,0)三點,一動點P從原點出發(fā)以1個單位/秒的速度沿x軸正方向運動,連接BP,過點A作直線BP的垂線交y軸于點Q.設點P的運動時間為t秒.

(1)求拋物線的解析式;

(2)BQ=AP時,求t的值;

(3)隨著點P的運動,拋物線上是否存在一點M,使△MPQ為等邊三角形?若存在,請直接寫t的值及相應點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線經(jīng)過點A-3,4).

1)求b的值;

2過點A軸的平行線交拋物線于另一點B,在直線AB上任取一點P,作點A關于直線OP的對稱點C

①當點C恰巧落在軸時,求直線OP的表達式

②連結BC,求BC的最小值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABO的直徑,直線DEO相切于點C,過A,B分別作ADDE,BEDE,垂足為點D,E,連接AC,BC,若AD,CE3,則的長為(  )

A.B.πC.πD.π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】校園安全受到全社會的廣泛關注,某中學對部分學生就校園安全知識的了解程度,采用隨機抽樣調查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:

(1)接受問卷調查的學生共有   人,扇形統(tǒng)計圖中基本了解部分所對應扇形的圓心角為   度;

(2)請補全條形統(tǒng)計圖;

(3)若該中學共有學生900人,請根據(jù)上述調查結果,估計該中學學生中對校園安全知識達到了解基本了解程度的總人數(shù).

查看答案和解析>>

同步練習冊答案