(2013年四川眉山3分)如圖,∠BAC=∠DAF=90°,AB=AC,AD=AF,點(diǎn)D、E為BC邊上的兩點(diǎn),且∠DAE=45°,連接EF、BF,則下列結(jié)論:①△AED≌△AEF;②△ABE∽△ACD;③BE+DC>DE;④BE2+DC2=DE2,
其中正確的有【   】個.

A.1     B.2      C.3     D.4
C。
①∵∠DAF=90°,∠DAE=45°,∴∠FAE=∠DAF﹣∠DAE=45°.
在△AED與△AEF中,∵,∴△AED≌△AEF(SAS)。①正確。
②∵∠BAC=90°,AB=AC,∴∠ABE=∠C=45°。
∵點(diǎn)D、E為BC邊上的兩點(diǎn),∠DAE=45°,∴AD與AE不一定相等,∠AED與∠ADE不一定相等。
∵∠AED=45°+∠BAE,∠ADE=45°+∠CAD,∴∠BAE與∠CAD不一定相等。
∴△ABE與△ACD不一定相似。②錯誤。
③∵∠BAC=∠DAF=90°,∴∠BAC﹣∠BAD=∠DAF﹣∠BAD,即∠CAD=∠BAF。
在△ACD與△ABF中,∵,∴△ACD≌△ABF(SAS)。∴CD=BF。
由①知△AED≌△AEF,∴DE=EF。
在△BEF中,∵BE+BF>EF,∴BE+DC>DE。③正確。
④由③知△ACD≌△ABF,∴∠C=∠ABF=45°。
∵∠ABE=45°,∴∠EBF=∠ABE+∠ABF=90°。
在Rt△BEF中,由勾股定理,得BE2+BF2=EF2。
∵BF=DC,EF=DE,∴BE2+DC2=DE2。④正確。
綜上所述,正確的結(jié)論有①③④。故選C。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在中,點(diǎn)、分別在邊上,平分,,如果,,那么    

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,AB∥GH∥CD,點(diǎn)H在BC上,AC與BD交于點(diǎn)G,AB=2,CD=3,則GH的長為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形ABCD中,AB=12cm,AD=16cm,動點(diǎn)E、F分別從A點(diǎn)、C點(diǎn)同時(shí)出發(fā),均以2cm/s的速度分別沿AD向D點(diǎn)和沿CB向B點(diǎn)運(yùn)動。

(1)經(jīng)過幾秒首次可使EF⊥AC?
(2)若EF⊥AC,在線段AC上,是否存在一點(diǎn)P,使?若存在,請說明P點(diǎn)的位置,并予以證明;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2013年四川南充8分)如圖,等腰梯形ABCD中,AD∥BC,AD=3,BC=7,∠B=60°,P為BC邊上一點(diǎn)(不與B,C重合),過點(diǎn)P作∠APE=∠B,PE交CD 于E.

(1)求證:△APB∽△PEC;
(2)若CE=3,求BP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在等腰梯形ABCD中,DC∥AB,E是DC延長線上的點(diǎn),連接AE,交BC于點(diǎn)F。

(1)求證:△ABF∽△ECF
(2)如果AD=5cm,AB=8cm,CF=2cm,求CE的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,要使△ABC與△DBA相似,則只需添加一個適當(dāng)?shù)臈l件是   (填一個即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如下4個圖中,不同的矩形ABCD,若把D點(diǎn)沿AE對折,使D點(diǎn)與BC上的F點(diǎn)重合;

(1)圖①中,若DE︰EC=2︰1,求證:△ABF∽△AFE∽△FCE;并計(jì)算BF︰FC;
(2)圖②中若DE︰EC=3︰1,計(jì)算BF︰FC=     ;圖③中若DE︰EC=4︰1,計(jì)算BF︰FC=     ;
(3)圖④中若DE︰EC=︰1,猜想BF︰FC=       ;并證明你的結(jié)論

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

下列命題是真命題的是(   )
A.相等的角是對頂角
B.三角形的一個外角大于任何一個內(nèi)角
C.一組鄰邊對應(yīng)成比例的兩個矩形相似
D.若AB被點(diǎn)C黃金分割,則AC=AB

查看答案和解析>>

同步練習(xí)冊答案