【題目】如圖①,先把一矩形紙片上下對(duì)折,設(shè)折痕為;如圖②,再把

點(diǎn) 疊在折痕線上,得到 .過點(diǎn)作,分別交、于點(diǎn)

1)求證: ;

2)在圖②中,如果沿直線再次折疊紙片,點(diǎn)能否疊在直線上?請(qǐng)說明理由;

3)在(2)的條件下,若,求的長度.

【答案】1)(2)見解析;(3

【解析】試題分析:(1)由題意可以得到BPE=∠AQB=90°,通過角的轉(zhuǎn)化可以得到BEP=∠ABQ,從而可以得到PBE∽△QAB;

2)根據(jù)折疊的知識(shí)可以得到QB=PB,由第(1)問中的相似可以得到對(duì)應(yīng)邊成比例,通過轉(zhuǎn)化可以得到PBE∽△BAE,從而可以解答本題;

3)由題意和第(2)問可以得到AEB=BEP=60°,ABE=90°,又因?yàn)?/span>AB=,sinAEB=,從而可以得到AE的長度.

試題解析:(1)證明:PQMNBNECAD,∴∠BPE=∠AQB=∠PBN=∠NBQ=90°∴∠PBE+∠BEP=90°,又∵∠PBE+∠ABQ=180°﹣∠ABE=180°﹣90°=90°,∴∠BEP=∠ABQ,在PBEQAB,∵∠BPE=∠AQB,BEP=∠ABQ,∴△PBE∽△QAB

2)點(diǎn)A能疊在直線EC上,理由:∵△PBE∽△QAB, 由折疊可知,QB=PB,,即,又∵∠ABE=BPE=90°∴△PBE∽△BAE,∴∠AEB=PEB沿直線EB再次折疊紙片,點(diǎn)A能疊在直線EC上;

3)解:由(2)可知,AEB=PEB,而由折疊過程知:2AEB+PEB=180°∴∠AEB=PEB=60°,在RtABE中,sinAEB=,AE=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為美化校園,計(jì)劃對(duì)面積為1800m2的區(qū)域進(jìn)行綠化,安排甲、乙兩個(gè)工程隊(duì)完成.已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化的面積的2倍,并且在獨(dú)立完成面積為400 m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用4.

1)求甲、乙兩工程隊(duì)每天能完成綠化的面積分別是多少m2?

2)若學(xué)校每天需付給甲隊(duì)的綠化費(fèi)用是0.4萬元,乙隊(duì)為0.25萬元,要使這次的綠化總費(fèi)用不超過8萬元,至少應(yīng)安排甲隊(duì)工作多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中學(xué)生騎電動(dòng)車上學(xué)給交通安全帶來隱患,為了解某中學(xué)2 500個(gè)學(xué)生家長對(duì)“中學(xué)生騎電動(dòng)車上學(xué)”的態(tài)度,從中隨機(jī)調(diào)查400個(gè)家長,結(jié)果有360個(gè)家長持反對(duì)態(tài)度,則下列說法正確的是( )

A. 調(diào)查方式是普查 B. 該校只有360個(gè)家長持反對(duì)態(tài)度

C. 樣本是360個(gè)家長 D. 該校約有90%的家長持反對(duì)態(tài)度

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨機(jī)抽取某城市天的空氣質(zhì)量狀況統(tǒng)計(jì)如下:

污染指數(shù)(

天數(shù)(

(其中時(shí),空氣質(zhì)量為優(yōu);時(shí),空氣質(zhì)量為良;時(shí),空氣質(zhì)量為輕微污染)

1)這天中,空氣質(zhì)量為輕微污染的天數(shù)所占的百分?jǐn)?shù)是多少?

2)估計(jì)該城市一年(以天記)中有多少天空氣質(zhì)量到良以上?

3)保護(hù)環(huán)境人人有責(zé),請(qǐng)說出一種保護(hù)環(huán)境的好方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】適合下列條件的ABC中,直角三角形的個(gè)數(shù)為( 。

a=3,b=4c=5; a=6,A=45°;a=2b=2,c=2 ④∠A=38°B=52°

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列給出的條件中,能判定四邊形ABCD為平行四邊形的是()

A.ABBC,CDDAB.AB//CD,ADBC

C.AB//CD,ACD.AB,CD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2x9x軸交于AB兩點(diǎn),與y軸交于點(diǎn)C,連接BC、AC

1)求ABOC的長;

2)點(diǎn)E從點(diǎn)A出發(fā),沿x軸向點(diǎn)B運(yùn)動(dòng)(點(diǎn)E與點(diǎn)A、B不重合),過點(diǎn)E作直線l平行BC,交AC于點(diǎn)D.設(shè)AE的長為m,ADE的面積為s,求s關(guān)于m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;

3)在(2)的條件下,連接CE,求CDE面積的最大值;此時(shí),求出以點(diǎn)E為圓心,與BC相切的圓的面積(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線經(jīng)過A(﹣1,0)、B(3,0)兩點(diǎn).

1)求拋物線的解析式和頂點(diǎn)坐標(biāo);

2)當(dāng)0x3時(shí),求y的取值范圍;

3)點(diǎn)P為拋物線上一點(diǎn),若,求出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCDAC平分∠BAD,ADC=ACB=90,EAB的中點(diǎn),ACDE交于點(diǎn)F

(1)求證: =AB·AD;

(2)求證:CE//AD

(3)AD=6, AB=8.求 的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案