【題目】如圖,BC、E三點(diǎn)在一條直線上,⊿ABC和⊿DCE都為等邊三角形,連接AE、DB、

1)試說(shuō)出 AE=BD的理由、

2)如果把⊿DCEC點(diǎn)順時(shí)針旋轉(zhuǎn)一個(gè)角度,使B、CE不在一條直線上,1)中的結(jié)論還成立嗎?(只回答,不說(shuō)理由)

3)在(2)中若AE、BD相交于P, 求∠APB的度數(shù)、

【答案】1)見解析(2)仍然成立(3)∠APB=60

【解析】

根據(jù)等邊三角形的判定與性質(zhì)、全等三角形的判定與性質(zhì)求證

解:(1)理由是:∵△ABC、DCE都為等邊三角形,
BC=AC,DC=CE,∠ACB=DCE,
∴∠ACB+ACD=ACD+DCE,
即∠BCD=ACE,

BCDACE中:

∴△BCD≌△ACESAS

BD=AE

2)仍然成立;

理由是:∵△ABC、DCE都為等邊三角形,
BC=AC,DC=CE,∠ACB=DCE,
∴∠ACB+ACD=ACD+DCE,
即∠BCD=ACE

BCDACE中:

∴△BCD≌△ACESAS

BD=AE;

3)∵△BCD≌△ACE,
∴∠CAP=CBP,
∵△ABC是等邊三角形,
∴∠CAB=CBA=60°,
∴∠APB=180°-(∠PAB+PBA

=180°-PAC+CAB+PBA

=180°-(∠PAB+CBA

=180°-60°+60°

=60°

即∠APB=60°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩車分別從相距420kmA、B兩地相向而行,乙車比甲車先出發(fā)1小時(shí),兩車分別以各自的速度勻速行駛,途經(jīng)C地(A、B、C三地在同一條直線上).甲車到達(dá)C地后因有事立即按原路原速返回A地,乙車從B地直達(dá)A地,甲、乙兩車距各自出發(fā)地的路程y(千米)與甲車行駛所用的時(shí)間x(小時(shí))的關(guān)系如圖所示,結(jié)合圖象信息回答下列問題:

1)甲車的速度是   千米/時(shí),乙車的速度是   千米/時(shí);

2)求甲車距它出發(fā)地的路程y(千米)與它行駛所用的時(shí)間x(小時(shí))之間的函數(shù)關(guān)系式;

3)甲車出發(fā)多長(zhǎng)時(shí)間后兩車相距90千米?請(qǐng)你直接寫出答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】熱愛學(xué)習(xí)的小明同學(xué)在網(wǎng)上搜索到下面的文字材料:

x軸上有兩個(gè)點(diǎn)它們的坐標(biāo)分別為.則這兩個(gè)點(diǎn)所成的線段的長(zhǎng)為;同樣,若在y軸上的兩點(diǎn)坐標(biāo)分別為(0,b)(0,d),則這兩個(gè)點(diǎn)所成的線段的長(zhǎng)為|b-d|.如圖1,在直角坐標(biāo)系中的任意兩點(diǎn)P1,P2,其坐標(biāo)分別為(a,b)(c,d),分別過(guò)這兩個(gè)點(diǎn)作兩坐標(biāo)軸的平行線,構(gòu)成一個(gè)直角三角形,其中直角邊P1Q=|a-c|,P2Q=|b-d|,利用勾股定理可得,線段P1 P2的長(zhǎng)為.

根據(jù)上面材料,回答下面的問題:

1)在平面直角坐標(biāo)系中,已知,,則線段AB的長(zhǎng)為_____

2)若點(diǎn)Cy軸上,點(diǎn)D的坐標(biāo)是,且,則點(diǎn)C的坐標(biāo)是_____;

3)如圖2,在直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為,點(diǎn)Cy軸上的一個(gè)動(dòng)點(diǎn),且A,BC三點(diǎn)不在同一條直線上,求ABC周長(zhǎng)的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,大樓AB右側(cè)有一障礙物,在障礙物的旁邊有一幢小樓DE,在小樓的頂端D處測(cè)得障礙物邊緣點(diǎn)C的俯角為30°,測(cè)得大樓頂端A的仰角為45°(點(diǎn)B,C,E在同一水平直線上),已知AB=80 m,DE=10 m,求障礙物B,C兩點(diǎn)間的距離.(結(jié)果精確到0.1 m)(參考數(shù)據(jù): ≈1.414,、≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將長(zhǎng)方形紙片ABCD折疊,使點(diǎn)D與點(diǎn)B重合,點(diǎn)C落在M處,若∠EFM125°,則∠ABE____________度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,拋物線yax2bxcx軸交于點(diǎn)A(2,0),B(40),且過(guò)點(diǎn)C(04)

(1)求出拋物線的表達(dá)式和頂點(diǎn)坐標(biāo);

(2)請(qǐng)你求出拋物線向左平移3個(gè)單位長(zhǎng)度,再向上平移1.5個(gè)單位長(zhǎng)度后拋物線的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,P是拋物線y=-x2+3x上一點(diǎn),且在x軸上方,過(guò)點(diǎn)P分別向x軸、y軸作垂線,得到矩形PMON.若矩形PMON的周長(zhǎng)隨點(diǎn)P的橫坐標(biāo)m增大而增大,則m的取值范圍是_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1如圖1,已知:在ABC中,BAC90°,AB=AC,直線m經(jīng)過(guò)點(diǎn)A,BD直線m, CE直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.

2 如圖2,將1中的條件改為:在ABC中,AB=ACD、A、E三點(diǎn)都在直線m,并且有BDA=AEC=BAC=,其中為任意銳角或鈍角.請(qǐng)問結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說(shuō)明理由.

3拓展與應(yīng)用:如圖3,DED、A、E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(DA、E三點(diǎn)互不重合),點(diǎn)FBAC平分線上的一點(diǎn),ABFACF均為等邊三角形,連接BD、CE,BDA=AEC=BAC,試判斷DEF的形狀.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線經(jīng)過(guò)點(diǎn)A,0),B,0),且與y軸相交于點(diǎn)C

1求這條拋物線的表達(dá)式;

2)求∠ACB的度數(shù);

3設(shè)點(diǎn)D是所求拋物線第一象限上一點(diǎn),且在對(duì)稱軸的右側(cè),點(diǎn)E在線段AC上,且DEAC,當(dāng)DCEAOC相似時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案