(2012•樊城區(qū)模擬)如圖,已知Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AB邊所在的直線為軸,將△ABC旋轉(zhuǎn)一周,則所得幾何體的表面積是   
【答案】分析:利用勾股定理易得AB的長,利用直角三角形的面積的不同求法求得AB邊上的高,那么所求幾何體為兩個(gè)圓錐的組合體,表面積為底面半徑為2.4,母線長為3,4的兩個(gè)圓錐的側(cè)面積的和.
解答:解:∵Rt△ABC中,∠ACB=90°,AC=4,BC=3,
∴AB=5,
∴AB邊上的高為3×4÷5=2.4,
∴所得幾何體的表面積是×2π×2.4×3+×2π×2.4×4=16.8π.
故答案為:16.8π.
點(diǎn)評:本題考查了圓錐的計(jì)算;得到幾何體的組成是解決本題的突破點(diǎn);圓錐的側(cè)面積=π×底面半徑×母線長.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•樊城區(qū)模擬)一個(gè)等腰三角形的兩邊長分別為5和2,則這個(gè)三角形的周長為
12
12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•樊城區(qū)模擬)先化簡
2a+1
a2-1
a2-2a+1
a2-a
-
1
a+1
,然后從-1≤a≤cos30°中選擇一個(gè)合適的無理數(shù)作為a的值代入求值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•樊城區(qū)模擬)如圖,PA與⊙O相切,切點(diǎn)為A,PO交⊙O于點(diǎn)C,點(diǎn)B是⊙O上一點(diǎn)(點(diǎn)B與點(diǎn)A、C不重合),若∠APC=32°,求∠ABC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•樊城區(qū)模擬)如圖,O為∠EPF內(nèi)射線PG上一點(diǎn),以O(shè)為圓心,10為半徑作⊙O,分別與∠EPF兩邊相交于A,B和C,D且AB=CD,連接OA,此時(shí)有OA∥PE.
(1)求證:AP=AO;
(2)若弦AB=12,求四邊形PAOC的面積;
(3)若以圖中已標(biāo)明的點(diǎn)(即P,A,B,C,D,O)構(gòu)造四邊形,則能構(gòu)成等腰梯形的四個(gè)點(diǎn)為
P、C、O、B或P、A、O、D或A、B、D、C.
P、C、O、B或P、A、O、D或A、B、D、C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•樊城區(qū)模擬)如圖,點(diǎn)O是坐標(biāo)原點(diǎn),四邊形ABCO是菱形,點(diǎn)A的坐標(biāo)為(-3,4),點(diǎn)C在x軸的正半軸上,直線AC交y軸于點(diǎn)M,AB邊交y軸于點(diǎn)H.
(1)求B、C兩點(diǎn)坐標(biāo);
(2)拋物線y=
16
x2-bx+c經(jīng)過A、O兩點(diǎn),求拋物線的解析式,并驗(yàn)證點(diǎn)C是否在拋物線上;
(3)在x軸上是否存在一點(diǎn)P,使△PCM與△ABC相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案