【題目】如圖所示,Rt△PAB的直角頂點(diǎn)P(3,4)在函數(shù)y= (x>0)的圖象上,頂點(diǎn)A、B在函數(shù)y= (x>0,0<t<k)的圖象上,PA∥x軸,連接OP,OA,記△OPA的面積為S△OPA , △PAB的面積為S△PAB , 設(shè)w=S△OPA﹣S△PAB . ①求k的值以及w關(guān)于t的表達(dá)式;
②若用wmax和wmin分別表示函數(shù)w的最大值和最小值,令T=wmax+a2﹣a,其中a為實(shí)數(shù),求Tmin .
【答案】解:①∵點(diǎn)P(3,4), ∴在y= 中,當(dāng)x=3時,y= ,即點(diǎn)A(3, ),
當(dāng)y=4時,x= ,即點(diǎn)B( ,4),
則S△PAB= PAPB= (4﹣ )(3﹣ ),
如圖,延長PA交x軸于點(diǎn)C,
則PC⊥x軸,
又S△OPA=S△OPC﹣S△OAC= ×3×4﹣ t=6﹣ t,
∴w=6﹣ t﹣ (4﹣ )(3﹣ )=﹣ t2+ t;
②∵w=﹣ t2+ t=﹣ (t﹣6)2+ ,
∴wmax= ,
則T=wmax+a2﹣a=a2﹣a+
∴當(dāng)a= 時,Tmin= .
【解析】(1)由點(diǎn)P的坐標(biāo)表示出點(diǎn)A、點(diǎn)B的坐標(biāo),從而得S△PAB= PAPB= (4﹣ )(3﹣ ),再根據(jù)反比例系數(shù)k的幾何意義知S△OPA=S△OPC﹣S△OAC=6﹣ t,由w=S△OPA﹣S△PAB可得答案;(2)將(1)中所得解析式配方求得wmax= ,代入T=wmax+a2﹣a配方即可得出答案.
【考點(diǎn)精析】掌握比例系數(shù)k的幾何意義是解答本題的根本,需要知道幾何意義:表示反比例函數(shù)圖像上的點(diǎn)向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A(2,3)、B(1,1)、C(4,1)是平面直角坐標(biāo)系中的三點(diǎn).
(1)①請畫出△ABC關(guān)于y軸對稱的△A1B1C1;
②畫出△A1B1C1向下平移3個單位得到的△A2B2C2;
(2)若△ABC中有一點(diǎn)P坐標(biāo)為(x,y),請直接寫出經(jīng)過以上變換后△A2B2C2中點(diǎn)P的對應(yīng)點(diǎn)P2的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+2過點(diǎn)A(﹣2,0),B(2,2),與y軸交于點(diǎn)C.
(1)求拋物線y=ax2+bx+2的函數(shù)表達(dá)式;
(2)若點(diǎn)D在拋物線y=ax2+bx+2的對稱軸上,求△ACD的周長的最小值;
(3)在拋物線y=ax2+bx+2的對稱軸上是否存在點(diǎn)P,使△ACP是直角三角形?若存在直接寫出點(diǎn)P的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC沿著射線BC方向平移至△A'B'C',使點(diǎn)A'落在∠ACB的外角平分線CD上,連結(jié)AA'.
(1)判斷四邊形ACC'A'的形狀,并說明理由;
(2)在△ABC中,∠B=90°,A B=24,cos∠BAC= ,求CB'的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示是一塊含30°,60°,90°的直角三角板,直角頂點(diǎn)O位于坐標(biāo)原點(diǎn),斜邊AB垂直于x軸,頂點(diǎn)A在函數(shù)y1= (x>0)的圖象上,頂點(diǎn)B在函數(shù)y2= (x>0)的圖象上,∠ABO=30°,則 = .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐A﹣BCD中,E,F(xiàn)分別為BC,CD上的點(diǎn),且BD∥平面AEF.
(1)求證:EF∥平ABD面;
(2)若AE⊥平面BCD,BD⊥CD,求證:平面AEF⊥平面ACD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例函數(shù)y= 的圖象如圖所示,以下結(jié)論: ①常數(shù)m<﹣1;
②在每個象限內(nèi),y隨x的增大而增大;
③若A(﹣1,h),B(2,k)在圖象上,則h<k;
④若P(x,y)在圖象上,則P′(﹣x,﹣y)也在圖象上.
其中正確的是( )
A.①②
B.②③
C.③④
D.①④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC,以AB為直徑的⊙O分別交AC于D,BC于E,連接ED,若ED=EC.
(1)求證:AB=AC;
(2)若AB=4,BC=2 ,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在1~7月份,某地的蔬菜批發(fā)市場指導(dǎo)菜農(nóng)生產(chǎn)和銷售某種蔬菜,并向他們提供了這種蔬菜每千克售價與每千克成本的信息如圖所示,則出售該種蔬菜每千克利潤最大的月份可能是( )
A.1月份
B.2月份
C.5月份
D.7月份
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com