【題目】小明、小亮、小剛、小穎一起研究一道數(shù)學(xué)題.如圖,已知EF⊥AB,CD⊥AB.
小明說:“如果還知道∠CDG=∠BFE,那么能得到∠AGD=∠ACB.”
小亮說:“把小明的已知和結(jié)論倒過來,即由∠AGD=∠ACB,可得到∠CDG=∠BFE.”
小剛說:“∠AGD一定大于∠BFE.”
小穎說:“如果連結(jié)GF,那么GF一定平行于AB.”
他們四人中,有________個(gè)人的說法是正確的.( )
A. 1 B. 2 C. 3 D. 4
【答案】B
【解析】
根據(jù)“垂直的定義、平行線的判定與性質(zhì)”結(jié)合“已知條件”進(jìn)行分析判斷即可.
(1)∵EF⊥AB,CD⊥AB,
∴∠BEF=∠BDC=90°,
∴CD∥EF,
∴∠BFE=∠BCD,
∵∠CDG=∠BFE,
∴∠CDG=∠BCD,
∴DG∥BC,
∴∠AGD=∠ACB,即小明的說法正確;
(2)∵∠AGD=∠ACB,
∴DG∥BC,
∴∠CDG=∠BFE,
∵EF⊥AB,CD⊥AB,
∴∠BEF=∠BDC=90°,
∴CD∥EF,
∴∠BFE=∠BCD,
∴∠CDG=∠BFE,即小亮的說法正確;
(3)∵EF⊥AB,CD⊥AB,
∴∠BEF=∠BDC=90°,
∴CD∥EF,
∴∠BFE=∠BCD,
∵∠ACB>∠BCD,
∴∠ACB>∠BFE,
但由于不知道此時(shí)DG與BC的位置關(guān)系,不能確定∠AGD與∠ACB的大小關(guān)系,
∴∠AGD一定大于∠BFE的說法不一定成立,即小剛的說法錯(cuò)誤;
(4)如下圖,連接GF,
因?yàn)橛梢阎獥l件不能確定點(diǎn)F、G在BC和AC上的位置,
所以不能確定FG與AB的位置關(guān)系,即小穎的說法錯(cuò)誤.
綜上所述,四人的說法中,有二人的說法是正確的.
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)B、E分別在AC、DF上,AF分別交BD、CE于點(diǎn)M、N,∠A=∠F,∠1=∠2.
(1)求證:四邊形BCED是平行四邊形;
(2)已知DE=2,連接BN,若BN平分∠DBC,求CN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列單項(xiàng)式的排列規(guī)律:3x,,照這樣排列第10個(gè)單項(xiàng)式應(yīng)是
A. 39x10 B. -39 x10 C. -43 x10 D. 43 x10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O,D,E三點(diǎn)在同一直線上,∠AOB=90°.
(1)圖中∠AOD的補(bǔ)角是_____,∠AOC的余角是_____;
(2)如果OB平分∠COE,∠AOC=35°,請(qǐng)計(jì)算出∠BOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】實(shí)驗(yàn)證明,平面鏡反射光線的規(guī)律是:射到平面鏡上的光線和被反射出的光線與平面鏡所夾的銳角相等.
(1)如圖,一束光線射到平面鏡上,被反射到平面鏡上,又被反射,若被反射出的光線與光線平行,且,則_________,________.
(2)在(1)中,若,則_______;若,則________;
(3)由(1)、(2),請(qǐng)你猜想:當(dāng)兩平面鏡、的夾角________時(shí),可以使任何射到平面鏡上的光線,經(jīng)過平面鏡、的兩次反射后,入射光線與反射光線平行.請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,AB=8,∠BAD=60°,點(diǎn)E從點(diǎn)A出發(fā),沿AB以每秒2個(gè)單位長度的速度向終點(diǎn)B運(yùn)動(dòng),當(dāng)點(diǎn)E不與點(diǎn)A重合時(shí),過點(diǎn)E作EF⊥AD于點(diǎn)F,作EG∥AD交AC于點(diǎn)G,過點(diǎn)G作GH⊥AD交AD(或AD的延長線)于點(diǎn)H,得到矩形EFHG,設(shè)點(diǎn)E運(yùn)動(dòng)的時(shí)間為t秒
(1)求線段EF的長(用含t的代數(shù)式表示);
(2)求點(diǎn)H與點(diǎn)D重合時(shí)t的值;
(3)設(shè)矩形EFHG與菱形ABCD重疊部分圖形的面積與S平方單位,求S與t之間的函數(shù)關(guān)系式;
(4)矩形EFHG的對(duì)角線EH與FG相交于點(diǎn)O′,當(dāng)OO′∥AD時(shí),t的值為;當(dāng)OO′⊥AD時(shí),t的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明學(xué)了有理數(shù)的乘方后,知道23=8,25=32,他問老師,有沒有20,2﹣3,如果有,等于多少?老師耐心提示他:25÷23=4,25﹣3=4,即25÷23=25﹣3=22=4,…“哦,我明白了了,”小明說,并且很快算出了答案,親愛的同學(xué),你想出來了嗎?
(1)請(qǐng)仿照老師的方法,推算出20,2﹣3的值.
(2)據(jù)此比較(﹣3)﹣2與(﹣2)﹣3的大。▽懗鲇(jì)算過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC中,AB=15,AC=13,高AD=12,則△ABC的周長為( 。
A.42 B.32 C.42 或 32 D.37 或 33
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com