【題目】如圖,三個邊長均為2的正方形重疊在一起,O1、O2是其中兩個正方形的中心,則陰影部分的面積是

【答案】2.

【解析

試題分析:根據(jù)題意作圖,連接O1B,O1C,可得O1BF≌△O1CG,那么可得陰影部分的面積與正方形面積的關系,同理得出另兩個正方形的陰影部分面積與正方形面積的關系,從而得出答案.

試題解析:連接O1B、O1C,如圖:

∵∠BO1F+FO1C=90°,FO1C+CO1G=90°,

∴∠BO1F=CO1G,

四邊形ABCD是正方形,

∴∠O1BF=O1CG=45°,

O1BF和O1CG中

∴△O1BF≌△O1CG,

O1、O2兩個正方形陰影部分的面積是S正方形

同理另外兩個正方形陰影部分的面積也是S正方形,

S陰影部分=S正方形=2.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,下列能判定AB∥CD的條件有( )個.

1∠B+∠BCD=180°;(2∠1=∠2;(3∠3=∠4;(4∠B=∠5

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=BC=8,AO=BO,點M是射線CO上的一個動點,∠AOC=60°,則當△ABM為直角三角形時,AM的長為____________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設中學生體質(zhì)健康綜合評定成績?yōu)?/span>x分,滿分為100分,規(guī)定:85≤x≤100A級,75≤x≤85B級,60≤x≤75C級,x60D級.現(xiàn)隨機抽取福海中學部分學生的綜合評定成績,整理繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中的信息,解答下列問題:

1)在這次調(diào)查中,一共抽取了 名學生,α= %;

2)補全條形統(tǒng)計圖;

3)扇形統(tǒng)計圖中C級對應的圓心角為 度;

4)若該校共有2000名學生,請你估計該校D級學生有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC是等腰三角形,∠BAC=90°,點DBC的中點,作正方形DEFG,使點A、C分別在DGDE上,連接AE、BG.

(1)試猜想線段BGAE的數(shù)量關系;

(2)如圖,將正方形DEFG繞點D按逆時針方向旋轉(zhuǎn)α(0°<α≤90°),判斷(1)中的結(jié)論是否仍然成立,證明你的結(jié)論.

(3)BC=DE=2,在(2)的旋轉(zhuǎn)過程中,求線段AE長的最大值和最小值

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠AOB=120°,OC∠AOB內(nèi)部任意一條射線,OD、OE分別是∠AOC、∠BOC的角平分線,下列敘述正確的是( 。

A. ∠DOE的度數(shù)不能確定 B. ∠AOD=∠EOC

C. ∠AOD+∠BOE=60° D. ∠BOE=2∠COD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:把函數(shù)y=bx+a和函數(shù)y=ax+b(其中a,b是常數(shù),且a≠0,b≠0)稱為一對交換函數(shù),其中一個函數(shù)是另一個函數(shù)的交換函數(shù).比如,函數(shù)y=4x+1是函數(shù)y=x+4的交換函數(shù),等等.

(1)直接寫出函數(shù)y=2x+1的交換函數(shù);_________________;并直接寫出這對交換函數(shù)和x軸所圍圖形的面積為_____________________________;

(2)若一次函數(shù)y=ax+2a和其交換函數(shù)與x軸所圍圖形的面積為3,求a的值.

(3)如圖,在平面直角坐標xOy中,矩形OABC中,點C(0, ),M、N分別是線段OC、AB的中點,將△ABD沿著折痕AD翻折,使點B的落點E恰好落在線段MN的中點,點F是線段BC的中點,連接EF,若一次函數(shù)與線段EF始終都有交點,則m的取值范圍為_____________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】.某區(qū)在實施居民用水額定管理前,對居民生活用水情況進行了調(diào)查,下表是通過簡單隨機抽樣獲得的50個家庭去年月平均用水量單位:噸,并將調(diào)查數(shù)據(jù)進行如下整理:

頻數(shù)分布表

分組

劃記

頻數(shù)

正正

11

19

合計

2

50

把上面頻數(shù)分布表和頻數(shù)分布直方圖補充完整;

從直方圖中你能得到什么信息? 寫出兩條即可;

為了鼓勵節(jié)約用水,要確定一個用水量的標準,超出這個標準的部分按倍價格收費,若要使的家庭收費不受影響,你覺得家庭月均用水量應該定為多少?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1點O為直線AB上一點,過O點作射線OC使BOC=120°,將一直角三角板的直角頂點放在點O處一邊OM在射線OB上,另一邊ON在直線AB的下方

1如圖2將圖1中的三角板繞點O逆時針旋轉(zhuǎn),使邊OM在BOC的內(nèi)部且OM恰好平分BOC此時AOM= 度;

2如圖3,繼續(xù)將圖2中的三角板繞點O按逆時針方向旋轉(zhuǎn),使得ON在AOC的內(nèi)部試探究AOM與NOC之間滿足什么等量關系并說明理由;

3將圖1中的三角板繞點O以每秒10°的速度沿逆時針方向旋轉(zhuǎn)一周,在旋轉(zhuǎn)的過程中,若直線ON恰好平分AOC則此時三角板繞點O旋轉(zhuǎn)的時間是

查看答案和解析>>

同步練習冊答案