已知拋物線y=
1
4
x2+1(如圖所示).
(1)填空:拋物線的頂點(diǎn)坐標(biāo)是(______,______),對稱軸是______;
(2)已知y軸上一點(diǎn)A(0,2),點(diǎn)P在拋物線上,過點(diǎn)P作PB⊥x軸,垂足為B.若△PAB是等邊三角形,求點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,點(diǎn)M在直線AP上.在平面內(nèi)是否存在點(diǎn)N,使四邊形OAMN為菱形?若存在,直接寫出所有滿足條件的點(diǎn)N的坐標(biāo);若不存在,請說明理由.
(1)頂點(diǎn)坐標(biāo)是(0,1),對稱軸是y軸(或x=O).

(2)∵△PAB是等邊三角形,
∴∠ABO=90°-60°=30°.
∴AB=20A=4.
∴PB=4.
解法一:把y=4代入y=
1
4
x2+1,
得x=±2
3

∴P1(2
3
,4),P2(-2
3
,4).
解法二:∴OB=
AB2-OA2
=2
3

∴P1(2
3
,4).
根據(jù)拋物線的對稱性,得P2(-2
3
,4).

(3)∵點(diǎn)A的坐標(biāo)為(0,2),點(diǎn)P的坐標(biāo)為(2
3
,4)
∴設(shè)線段AP所在直線的解析式為y=kx+b
b=2
2
3
k+b=4

解得:
k=
3
3
b=2

∴解析式為:y=
3
3
x+2
設(shè)存在點(diǎn)N使得OAMN是菱形,
∵點(diǎn)M在直線AP上,
∴設(shè)點(diǎn)M的坐標(biāo)為:(m,
3
3
m+2)
如圖,作MQ⊥y軸于點(diǎn)Q,則MQ=m,AQ=OQ-OA=
3
3
m+2-2=
3
3
m
∵四邊形OAMN為菱形,
∴AM=AO=2,
∴在直角三角形AMQ中,AQ2+MQ2=AM2,
即:m2+(
3
3
m)2=22
解得:m=±
3

代入直線AP的解析式求得y=3或1,
當(dāng)P點(diǎn)在拋物線的右支上時,分為兩種情況:
當(dāng)N在右圖1位置時,
∵OA=MN,
∴MN=2,
又∵M(jìn)點(diǎn)坐標(biāo)為(
3
,3),
∴N點(diǎn)坐標(biāo)為(
3
,1),即N1坐標(biāo)為(
3
,1).
當(dāng)N在右圖2位置時,
∵M(jìn)N=OA=2,M點(diǎn)坐標(biāo)為(-
3
,1),
∴N點(diǎn)坐標(biāo)為(-
3
,-1),即N2坐標(biāo)為(-
3
,-1).
當(dāng)P點(diǎn)在拋物線的左支上時,分為兩種情況:
第一種是當(dāng)點(diǎn)M在線段PA上時(PA內(nèi)部)我們求出N點(diǎn)坐標(biāo)為(-
3
,1);
第二種是當(dāng)M點(diǎn)在PA的延長線上時(在第一象限)我們求出N點(diǎn)坐標(biāo)為(
3
,-1)
∴存在N1
3
,1),N2(-
3
,-1)N3(-
3
,1),N4
3
,-1)使得四邊形OAMN是菱形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,直線y=
1
2
x+
3
2
與直線y=x交于點(diǎn)A,點(diǎn)B在直線y=
1
2
x+
3
2
上,∠BOA=90°.拋物線y=ax2+bx+c過點(diǎn)A,O,B,頂點(diǎn)為點(diǎn)E.
(1)求點(diǎn)A,B的坐標(biāo);
(2)求拋物線的函數(shù)表達(dá)式及頂點(diǎn)E的坐標(biāo);
(3)設(shè)直線y=x與拋物線的對稱軸交于點(diǎn)C,直線BC交拋物線于點(diǎn)D,過點(diǎn)E作FEx軸,交直線AB于點(diǎn)F,連接OD,CF,CF交x軸于點(diǎn)M.試判斷OD與CF是否平行,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=ax2+bx+8(a≠0)的圖象與x軸交與A,B兩點(diǎn),與y軸交與點(diǎn)C,已知點(diǎn)A的坐標(biāo)為(-2,0),sin∠ABC=
2
5
5
,點(diǎn)D是拋物線的頂點(diǎn),直線DC交x軸于點(diǎn)E.
(1)求拋物線的解析式及其頂點(diǎn)D的坐標(biāo);
(2)在直線CD上是否存在一點(diǎn)Q,使以B,C,Q為頂點(diǎn)的三角形是等腰三角形?若存在,請直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由;
(3)點(diǎn)P是直線y=2x-4上一點(diǎn),過點(diǎn)P作直線PM垂直于直線CD,垂足為M,若∠MPO=75°,求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(1,1),直線y=kx+m的圖象與該二次函數(shù)的圖象交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(
5
2
13
4
),B點(diǎn)在y軸上,直線與x軸的交點(diǎn)為F,P為線段AB上的一個動點(diǎn)(點(diǎn)P與A、B不重合),過P作x軸的垂線與這個二次函數(shù)的圖象交于E點(diǎn).
(1)求k,m的值及這個二次函數(shù)的解析式;
(2)設(shè)線段PE的長為h,點(diǎn)P的橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)D為直線AB與這個二次函數(shù)圖象對稱軸的交點(diǎn),在線段AB上是否存在點(diǎn)P,使得以點(diǎn)P、E、D為頂點(diǎn)的三角形與△BOF相似?若存在,請求出P點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,等腰直角三角形紙片ABC中,AC=BC=4,∠ACB=90°,直角邊AC在x軸上,B點(diǎn)在第二象限,A(1,0),AB交y軸于E,將紙片過E點(diǎn)折疊使BE與EA所在直線重合,得到折痕EF(F在x軸上),再展開還原沿EF剪開得到四邊形BCFE,然后把四邊形BCFE從E點(diǎn)開始沿射線EA平移,至B點(diǎn)到達(dá)A點(diǎn)停止.設(shè)平移時間為t(s),移動速度為每秒1個單位長度,平移中四邊形BCFE與△AEF重疊的面積為S.
(1)求折痕EF的長;
(2)是否存在某一時刻t使平移中直角頂點(diǎn)C經(jīng)過拋物線y=x2+4x+3的頂點(diǎn)?若存在,求出t值;若不存在,請說明理由;
(3)直接寫出S與t的函數(shù)關(guān)系式及自變量t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,⊙A的半徑為4,A的坐標(biāo)為(2,0),⊙A與x軸交于E、F兩點(diǎn),與y軸交于C、D兩點(diǎn),過C點(diǎn)作⊙A的切線BC交x軸于B.
(1)求直線BC的解析式;
(2)若一拋物線與x軸的交點(diǎn)恰為⊙A與x軸的兩個交點(diǎn),且拋物線的頂點(diǎn)在直線上y=
3
3
x+2
3
上,求此拋物線的解析式;
(3)試判斷點(diǎn)C是否在拋物線上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸上,點(diǎn)C在y軸上,OA=10,OC=6.
(1)如圖1,在OA上選取一點(diǎn)G,將△COG沿CG翻折,使點(diǎn)O落在BC邊上,記為E,求折痕y1所在直線的解析式;
(2)如圖2,在OC上選取一點(diǎn)D,將△AOD沿AD翻折,使點(diǎn)O落在BC邊上,記為E'.
①求折痕AD所在直線的解析式;
②再作E'FAB,交AD于點(diǎn)F.若拋物線y=-
1
12
x2+h過點(diǎn)F,求此拋物線的解析式,并判斷它與直線AD的交點(diǎn)的個數(shù).
(3)如圖3,一般地,在OC、OA上選取適當(dāng)?shù)狞c(diǎn)D'、G',使紙片沿D'G'翻折后,點(diǎn)O落在BC邊上,記為E''.請你猜想:折痕D'G'所在直線與②中的拋物線會有什么關(guān)系?用(1)中的情形驗(yàn)證你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=-
1
4
x2+x+3
與x軸相交于點(diǎn)A、B,與y軸相交于點(diǎn)C,頂點(diǎn)為點(diǎn)D,對稱軸l與直線BC相交于點(diǎn)E,與x軸相交于點(diǎn)F.
(1)求直線BC的解析式;
(2)設(shè)點(diǎn)P為該拋物線上的一個動點(diǎn),以點(diǎn)P為圓心,r為半徑作⊙P
①當(dāng)點(diǎn)P運(yùn)動到點(diǎn)D時,若⊙P與直線BC相交,求r的取值范圍;
②若r=
4
5
5
,是否存在點(diǎn)P使⊙P與直線BC相切?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
提示:拋物線y=ax2+bx+x(a≠0)的頂點(diǎn)坐標(biāo)(-
b
2a
,
4ac-b2
4a
),對稱軸x=-
b
2a

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角坐標(biāo)平面中,O為坐標(biāo)原點(diǎn),二次函數(shù)y=x2+bx+c的圖象與y軸的負(fù)半軸相交于點(diǎn)C,點(diǎn)C的坐標(biāo)為(0,-3),且BO=CO.
(1)求出B點(diǎn)坐標(biāo)和這個二次函數(shù)的解析式;
(2)求出y隨x的增大而減小的自變量x的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案