精英家教網 > 初中數學 > 題目詳情

【題目】如圖,拋物線y=ax2+bx+c的圖象經過點A(﹣2,0),點B(4,0),點D(2,4),與y軸交于點C,作直線BC,連接AC,CD.

(1)求拋物線的函數表達式;

(2)E是拋物線上的點,求滿足∠ECD=∠ACO的點E的坐標;

(3)點M在y軸上且位于點C上方,點N在直線BC上,點P為第一象限內拋物線上一點,若以點C,M,N,P為頂點的四邊形是菱形,求菱形的邊長.

【答案】(1)y=x2+x+4;(2)點E的坐標為(1,),(3,);(3)菱形的邊長為44.

【解析】

試題分析:(1)把點A(2,0),點B(4,0),點D(2,4)代入y=ax2+bx+c,用待定系數法求出拋物線解析式即可.(2)分點E在直線CD上方的拋物線上和點E在直線CD下方的拋物線上兩種情況,用三角函數求解即可;(3)分CM為菱形的邊和CM為菱形的對角線兩種情況,用菱形的性質進行計算即可.

試題解析:(1)拋物線y=ax2+bx+c的圖象經過點A(2,0),點B(4,0),點D(2,4),

設拋物線解析式為y=a(x+2)(x4),

∴﹣8a=4,

a=,

拋物線解析式為y=(x+2)(x4)=x2+x+4;

(2)如圖1,

點E在直線CD上方的拋物線上,記E

連接CE,過E作EF′⊥CD,垂足為F,

由(1)知,OC=4,

∵∠ACO=ECF

tanACO=tanECF,

=,

設線段EF=h,則CF=2h,

點E(2h,h+4)

點E在拋物線上,

∴﹣(2h)2+2h+4=h+4,

h=0(舍)h=

E(1,),

點E在直線CD下方的拋物線上,記E,

的方法得,E(3,),

點E的坐標為(1,),(3,

(3)CM為菱形的邊,如圖2,

在第一象限內取點P,過點

P作PN′∥y軸,交BC于N,過點P作PM′∥BC,

交y軸于M

四邊形CMPN是平行四邊形,

四邊形CMPN是菱形,

PM=PN,

過點P作PQ′⊥y軸,垂足為Q

OC=OB,BOC=90°,

∴∠OCB=45°

∴∠PMC=45°,

設點P(m,m2+m+4),

在RtPMQ中,PQ=m,PM=m,

B(4,0),C(0,4),

直線BC的解析式為y=x+4,

PN′∥y軸,

N(m,m+4),

PN=m2+m+4m+4)=m2+2m,

m=m2+2m,

m=0(舍)或m=42,

菱形CMPN的邊長為(42)=44.

CM為菱形的對角線,如圖3,

在第一象限內拋物線上取點P,過點P作PMBC,

交y軸于點M,連接CP,過點M作MNCP,交BC于N,

四邊形CPMN是平行四邊形,連接PN交CM于點Q,

四邊形CPMN是菱形,

PQCM,PCQ=NCQ,

∵∠OCB=45°,

∴∠NCQ=45°,

∴∠PCQ=45°

∴∠CPQ=PCQ=45°

PQ=CQ,

設點P(n,n2+n+4),

CQ=n,OQ=n+2,

n+4=n2+n+4,

n=0(舍),

此種情況不存在.

菱形的邊長為44.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】為了滿足市場需求,某廠家生產A、B兩種款式的環(huán)保購物袋,每天共生產5000個,兩種購物袋的成本和售價如下表:

成本(元/個)

售價 (元/個)

2

2.4

3

3.6

設每天生產A種購物袋x個,每天共獲利y.

1)求yx的函數解析式;

2)如果該廠每天最多投入成本12000元,那么每天最多獲利多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,M△ABC的邊BC的中點,AN平分∠BAC,BN⊥AN于點N,延長BNAC于點D,已知AB=10,BC=15,MN=3

1)求證:BN=DN;

2)求△ABC的周長

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,BD是矩形ABCD的一條對角線.

(1)BD的垂直平分線EF,分別交AD,BC于點E,F,垂足為點O(要求用尺規(guī)作圖,保留作圖痕跡,不要求寫作法)

(2)(1)中,連接BEDF,求證:四邊形DEBF是菱形

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,菱形ABCD中,AB=1,∠A=60°EFGH是矩形,矩形的頂點都在菱形的邊上.設AE=AH=x0x1),矩形的面積為S

1)求S關于x的函數解析式;

2)當EFGH是正方形時,求S的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某水果公司購進10 000kg蘋果,公司想知道蘋果的損壞率,從所有蘋果中隨機抽取若干進行統計,部分結果如下表:

蘋果總質量n(kg)

100

200

300

400

500

1000

損壞蘋果質量m(kg)

10.50

19.42

30.63

39.24

49.54

101.10

蘋果損壞的頻率

(結果保留小數點后三位)

0.105

0.097

0.102

0.098

0.099

0.101

估計這批蘋果損壞的概率為_____(結果保留小數點后一位),損壞的蘋果約有______kg.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知點AB、C是數軸上三點,O為原點.點C對應的數為6,BC4,AB12

1)求點A、B對應的數;

2)動點P、Q分別同時從AC出發(fā),分別以每秒6個單位和3個單位的速度沿數軸正方向運動.MAP的中點,NCQ上,且CNCQ,設運動時間為tt0).

①求點M、N對應的數(用含t的式子表示); t為何值時,OM2BN

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】恰逢“植樹節(jié)”,師梅與博小兩所學校決定購進A,B兩種樹苗進行種植,已知兩所學校共花費了390元購進了50棵樹苗,其中A樹苗10元一棵,B樹苗5元一棵.現在要將50棵樹苗運往兩所學校,其運費如下表所示:

樹苗類型

師梅(元/棵)

博小(元/棵)

A

8

10

B

6

5

1)求這50棵樹苗中A、B樹苗各多少棵?

2)現師梅需要30棵樹苗,博小需要20棵樹苗,設師梅需要A樹苗為x棵,運往師梅和博小的總運費為y,求yx的函數解析式.

3)在(2)的條件下,若運往師梅的運費不超過200元,請你寫出使總運費最少的樹苗分配方案,并求出最少費用.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】7分)如圖,平行四邊形ABCD中,AB=3cmBC=5cm,∠B=60°GCD的中點,E是邊AD上的動點,EG的延長線與BC的延長線交于點F,連接CE,DF

1)求證:四邊形CEDF是平行四邊形;

2AE= cm時,四邊形CEDF是矩形;

AE= cm時,四邊形CEDF是菱形;(直接寫出答案,不需要說明理由)

查看答案和解析>>

同步練習冊答案