【題目】 如圖,在邊長為4的正方形紙片ABCD中,從邊CD上剪去一個矩形EFGH,且有EF=DH=CE=1cm,FG=2cm,動點(diǎn)P從點(diǎn)A開始沿AD邊向點(diǎn)D以1cm/s的速度運(yùn)動至點(diǎn)D停止.以AP為邊在AP的下方做正方形AQKP,設(shè)點(diǎn)P運(yùn)動時間為t(s),正方形AQKP和紙片重疊部分的面積為S(cm2),則S與t之間的函數(shù)關(guān)系用圖象表示大致是( 。
A. B.
C. D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】港珠澳大橋是中國境內(nèi)一座連接香港、珠海和澳門的橋隧工程,位于中國廣東省伶仃洋區(qū)域內(nèi),為珠江三角洲地區(qū)環(huán)線高速公路南環(huán)段,青州航道橋“中國結(jié)三地同心”主題的斜拉索塔如圖(1)所示.某數(shù)學(xué)興趣小組根據(jù)材料編制了如下數(shù)學(xué)問題,請你解答.
如圖(2),BC,DE為主塔AB(主塔AB與橋面AC垂直)上的兩條鋼索,橋面上C、D兩點(diǎn)間的距離為16m,主塔上A、E兩點(diǎn)的距離為18.4m,已知BC與橋面AC的夾角為30°,DE與橋面AC的夾角為38°。求主塔AB的高.(結(jié)果精確到1米,參考數(shù)據(jù):sin38°≈0.6,cos38°≈0.8,tan38°≈0.8,≈1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在軸的上方,直角∠BOA繞原點(diǎn)O按順時針方向旋轉(zhuǎn).若∠BOA的兩邊分別于函數(shù),的圖像交于B、A兩點(diǎn),則∠OAB大小的變化趨勢為 ( )
A. 逐漸變小B. 逐漸變大C. 時大時小D. 保持不變
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】目前世界上最長的跨海大橋——杭州灣跨海大橋通車了.通車后,地到寧波港的路程比原來縮短了.已知運(yùn)輸車速度不變時,行駛時間將從原來的縮短到.
(1)求地經(jīng)杭州灣跨海大橋到寧波港的路程.
(2)若貨物運(yùn)輸費(fèi)用包括運(yùn)輸成本和時間成本,某車貨物從地到寧波港的運(yùn)輸成本是每千米元,時間成本是每時元,那么該車貨物從地經(jīng)杭州灣跨海大橋到寧波港的運(yùn)輸費(fèi)用是多少元?
(3)A地準(zhǔn)備開辟寧波方向的外運(yùn)路線,即貨物從地經(jīng)杭州灣跨海大橋到寧波港,再從寧波港運(yùn)到地.若有一批貨物(不超過車)從地按外運(yùn)路線運(yùn)到地的運(yùn)費(fèi)需元,其中從地經(jīng)杭州灣跨海大橋到寧波港的每車運(yùn)輸費(fèi)用與(2)中相同,從寧波港到地的海上運(yùn)費(fèi)對一批不超過車的貨物計費(fèi)方式是:車元,當(dāng)貨物每增加車時,每車的海上運(yùn)費(fèi)就減少元,問這批貨物有幾車?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將正整數(shù)按如圖所示的規(guī)律排列下去,若用有序數(shù)對(m,n)表示第m排,從左到右第n個數(shù),如(3,2)表示正整數(shù)5,(4,3)表示正整數(shù)9,則(20,19)表示的正整數(shù)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,這是某水庫大壩截面示意圖,張強(qiáng)在水庫大壩頂CF上的瞭望臺D處,測得水面上的小船A的俯角為40°,若DE=3米,CE=2米,CF平行于水面AB,瞭望臺DE垂直于壩頂CF,迎水坡BC的坡度i=4:3,坡長BC=10米,求小船A距坡底B處的長.(結(jié)果保留0.1米)(參考數(shù)據(jù):sin40°≈0.64,cos40°=0.77,tan40°≈0.84)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AC=4,BC=2,點(diǎn)D在射線AB上,在構(gòu)成的圖形中,△ACD為等腰三角形,且存在兩個互為相似的三角形,則CD的長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分10分)
如圖,在□ABCD中,以點(diǎn)A為圓心,AB長為半徑畫弧交AD于點(diǎn)F;再分別以點(diǎn)B、F為圓心,大于BF的相同長為半徑畫弧,兩弧交于點(diǎn)P;連接AP并延長交BC于點(diǎn)E,連接EF,則所得四邊形ABEF是菱形.
(1)根據(jù)以上尺規(guī)作圖的過程,求證四邊形ABEF是菱形;
(2)若菱形ABEF的周長為16,AE=4,求∠C的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線 (a≠0)的對稱軸為直線x=1,與x軸的一個交點(diǎn)坐標(biāo)為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:
①4ac<b2;
②方程 的兩個根是x1=﹣1,x2=3;
③3a+c>0
④當(dāng)y>0時,x的取值范圍是﹣1≤x<3
⑤當(dāng)x<0時,y隨x增大而增大
其中結(jié)論正確的個數(shù)是( )
A. 4個 B. 3個 C. 2個 D. 1個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com