【題目】如圖,在中,已知:,,,以斜邊AB的中點P為旋轉(zhuǎn)中心,把這個三角形按逆時針方向旋轉(zhuǎn)得到,則旋轉(zhuǎn)前后兩個直角三角形重疊部分的面積為______.
【答案】
【解析】
根據(jù)已知及勾股定理求得DP的長,再根據(jù)全等三角形的判定得到△B′PH≌△BPD,從而根據(jù)直角三角形的性質(zhì)求得GH,BG的長,從而不難求得旋轉(zhuǎn)前后兩個直角三角形重疊部分的面積.
解:如圖,
在直角△DPB中,BP=AP=AC=3,
∵∠A=60°,
∴DP2+BP2=BD2,
∴x2+32=(2x)2,
∴DP=x=,
∵在△B′PH和△BPD中, ,
∴△B′PH≌△BPD,
∴PH=PD=,
∵在直角△BGH中,BH=3+,
∴GH=,BG=(3+),
∴S△BGH=××(3+)=,S△BDP=×3×=,
∴SDGHP=-,
=cm2.
故答案是:.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l1:y=x與雙曲線y= 相交于點A(a,2),將直線l1向上平移3個單位得到l2 , 直線l2與雙曲線相交于B、C兩點(點B在第一象限),交y軸于D點.
(1)求雙曲線y= 的解析式;
(2)求tan∠DOB的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD外取一點E,連接AE、BE、DE,過A作AE的垂線交ED于點P,若AE=AP=1,PB=,下列結(jié)論:①△APD≌△AEB;②EB⊥ED;③PD=,其中正確結(jié)論的序號是( )
A. ①② B. ①③ C. ②③ D. ①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校甲、乙兩班分別有一男生和一女生共4名學生報名競選校園廣播播音員.
(1)若從甲、乙兩班報名的學生中分別隨機選1名學生,則所選的2名學生性別相同的概率是多少?
(2)若從報名的4名學生中隨機選2名,求這2名學生來自同一班級的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分線分別交AB和AC于點D,E.
(1)求證:AE=2CE;
(2)連接CD,請判斷△BCD的形狀,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com