【題目】如圖,將邊長為4的正方形ABCD的一邊BC與直角邊分別是2和4的RtGEF的

一邊GF重合.正方形ABCD以每秒1個單位長度的速度沿GE向右勻速運動,當點A和點E重合時正方形停止運

動.設正方形的運動時間為t秒,正方形ABCD與RtGEF重疊部分面積為s,則s關于t的函數(shù)圖象為

A. B.

C. D.

【答案】B

【解析】

試題分類討論:

當0≤t≤2時,如圖,此時,B在GE之間,BG=t,BE=2﹣t,

PBGF,∴△EBP∽△EGF。

,即。

當2<t≤4時,G、E在AB之間,。

當4<t≤6時,如圖,此時,A在GE之間,GA=t﹣4,AE=6﹣t,

PAGF,∴△EAP∽△EGF,

,即。

綜上所述,當0≤t≤2時,s關于t的函數(shù)圖象為開口向下的拋物線的一部分;當2<t≤4時,s關于t的函數(shù)圖象為平行于x軸的一條線段;當4<t≤6時,s關于t的函數(shù)圖象為開口向上的拋物線的一部分。

故選B!

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)yk1x+b的圖象經(jīng)過A0,﹣2),B10)兩點,與反比例函數(shù)的圖象在第一象限內(nèi)的交點為M,若△OBM的面積為2

1)求一次函數(shù)和反比例函數(shù)的表達式;

2)在x軸上是否存在點P,使AMMP?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC=4,將ABC繞點A順時針旋轉30°,得到ACD,延長ADBC的延長線于點E,則DE的長為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知點,直線軸和軸分別交于點,,若拋物線與直線有兩個不同的交點,其中一個交點在線段上(包含,兩個端點),另一個交點在線段上(包含,兩個端點),則的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某小區(qū)居民使用共享單車次數(shù)的情況,某研究小組隨機采訪該小區(qū)的10位居民,得到這10位居民一周內(nèi)使用共享單車的次數(shù)統(tǒng)計如下:

使用次數(shù)

0

5

10

15

20

人數(shù)

1

1

4

3

1

1)這10位居民一周內(nèi)使用共享單車次數(shù)的中位數(shù)是   次,眾數(shù)是   次,平均數(shù)是   次.

2)若小明同學把數(shù)據(jù)“20”看成了“30”,那么中位數(shù),眾數(shù)和平均數(shù)中不受影響的是   .(填中位數(shù),眾數(shù)平均數(shù)

3)若該小區(qū)有200名居民,試估計該小區(qū)居民一周內(nèi)使用共享單車的總次數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】全民閱讀活動,是中央宣傳部、中央文明辦和新聞出版總署貫徹落實關于建設學習型社會要求的一項重要舉措.讀書必須要講究方法,只有按照一定的方法去閱讀,才能取得事半功倍的效果.常用的閱讀方法有:A.圈點批注法;B.摘記法;C.反思法:D.撰寫讀后感法;E.其他方法.某縣某中學張老師為了解本校學生使用不同閱讀方法讀書的情況,隨機抽取部分本校中學生進行了調(diào)查,通過數(shù)據(jù)的收集、整理繪制成以下不完整的統(tǒng)計圖表,請根據(jù)圖表中的信息解答下列問題:

中學生閱讀方法情況統(tǒng)計表

閱讀方法

頻數(shù)

A

圈點批注法

a

B

摘記法

20

C

反思法

b

D

撰寫讀后感法

16

E

其他方法

4

1)請你補全圖表中的a,b,c數(shù)據(jù):a   ,b   ,c   ;

2)若該校共有中學生960名,估計該校使用反思法讀書的學生有   人;

3)小明從以上抽樣調(diào)查所得結果估計全縣6000名中學生中有1200人采用撰寫讀后感法讀書,你同意小明的觀點嗎?請說明你的理由.

4)該校決定從本次抽取的其他方法”4名學生(記為甲,乙,丙,。┲,隨機選擇2名成為學校閱讀宣講志愿者,請你用列表法或畫樹狀圖的方法,求恰好抽到甲和乙的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在圓O中,弦AB∥弦CD,AB=24CD=10,弦AB的弦心距為5,則ABCD之間的距離是_____ .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知⊙O為△ABC(∠A<∠ABC)的外接圓,且AB的直徑,AB=8,點DAB延長線上一點,點 E為半徑OB上一點,連接CD、CE、OC,且∠BCD=∠A

1)求證:CD的切線;

2)若CB=CE,求證:CE2=CO2-OA·OE;

3)在(2)的條件下,求OE+BC的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:在平面直角坐標系中,點O為坐標原點,直線y=﹣x+bx軸交于點A,與y軸交于點C.經(jīng)過點A,C的拋物線yax2+3ax3x軸的另一個交點為點B

1)如圖1,求a的值;

2)如圖2,點D,E分別在線段AC,AB上,且BE2AD,連接DE,將線段DE繞點D順時針旋轉得到線段DF,且旋轉角∠EDF=∠OAC,連接CF,求tanACF的值;

3)如圖3,在(2)的條件下,當∠DFC135°時,在線段AC的延長線上取點M,過點MMNDE交拋物線于點N,連接DN,EM,若MNDF,求點N的橫坐標.

查看答案和解析>>

同步練習冊答案