【題目】如圖,在平面直角坐標系xOy中,已知點A3,4),將OA繞坐標原點O逆時針旋轉(zhuǎn)90°OA′,則點A′的坐標是 (  )

A.-4,3B.-3,4C.3,-4D.4,-3

【答案】A

【解析】

過點A作AB⊥x軸,垂足為B,過A′作A′B′⊥x軸,垂足為B′,證△AOB≌△OA′B′即可得到答案.

過點A作AB⊥x軸,垂足為B,過A′作A′B′⊥x軸,垂足為B′,

∵OA繞坐標原點O逆時針旋轉(zhuǎn)90°至OA′,

∴OA=OA′,∠AOA′=90°,

∵∠A′OB′+∠AOB=90°,∠AOB+∠OAB=90°

∴∠A′OB′=∠OAB

在△AOB和△OA′B′中

∴△AOB≌△OA′B′(AAS)

∵點在第二象限

∴點的坐標為(-4,3)

故答案選A.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】若關(guān)于的方程有非負實數(shù)解,關(guān)于的一次不等式組,有解,則滿足這兩個條件的所有整數(shù)的值的和是

A.-5B.-6C.-7D.-8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線 軸的兩個交點間的距離為2

1)若此拋物線的對稱軸為直線 ,請判斷點(3,3)是否在此拋物線上?

2)若此拋物線的頂點為(S,t),請證明;

3)當時,求的取值范圍

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△OAB,△OCD中,OA=OB,OC=OD,∠AOB=∠COD=90°.

(1)若O、C、A在一條直線上,連AD、BC,分別取AD、BC的中點M、N如圖(1),求出線段MN、AC之間的數(shù)量關(guān)系;

(2)若將△OCD繞O旋轉(zhuǎn)到如圖(2)的位置,連AD、BC,取BC的中點M,請?zhí)骄烤段OM、AD之間的關(guān)系,并證明你的結(jié)論;

(3)若將△OCD由圖(1)的位置繞O順時針旋轉(zhuǎn)角度α(0°<α<360°),且OA=4,OC=2,是否存在角度α使得OC⊥BC?若存在,請直接寫出此時△ABC的面積;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】目前微信”、“支付寶”、“共享單車網(wǎng)購給我們的生活帶來了很多便利,初二數(shù)學小組在校內(nèi)對你最認可的四大新生事物進行調(diào)查,隨機調(diào)查了m人(每名學生必選一種且只能從這四種中選擇一種)并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.

(1)根據(jù)圖中信息求出m=   ,n=   ;

(2)請你幫助他們將這兩個統(tǒng)計圖補全;

(3)根據(jù)抽樣調(diào)查的結(jié)果,請估算全校2000名學生中,大約有多少人最認可微信這一新生事物?

(4)已知A、B兩位同學都最認可微信”,C同學最認可支付寶”D同學最認可網(wǎng)購從這四名同學中抽取兩名同學,請你通過樹狀圖或表格,求出這兩位同學最認可的新生事物不一樣的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,D是等邊三角形ABC內(nèi)一點,將線段AD繞點A順時針旋轉(zhuǎn)60°,得到線段AE,連接CD,BE.

(1)求證:∠AEB=∠ADC;

(2)連接DE,若ADC=105°,求BED的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,對角線ACBD交于點O,若增加一個條件,使ABCD成為菱形,下列給出的條件不正確的是( 。

A.AB=ADB.ACBDC.AC=BDD.AD=CD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】通過類比聯(lián)想、引申拓展研究典型題目,可達到解一題知一類的目的.下面是一個案例.

原題:如圖①,點分別在正方形的邊上,,連接,則,試說明理由.

1)思路梳理

因為,所以把繞點逆時針旋轉(zhuǎn)90°,可使 重合.因為,所以,點共線.

根據(jù) ,易證 ,得.請證明.

2)類比引申

如圖②,四邊形中,,點分別在邊上,.都不是直角,則當滿足等量關(guān)系時,仍然成立,請證明.

3)聯(lián)想拓展

如圖③,在中,,點均在邊上,且.猜想應(yīng)滿足的等量關(guān)系,并寫出證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系xOy中,二次函數(shù)y=x2+(2k﹣1)x+k+1的圖象與x軸相交于O、A兩點.

(1)求這個二次函數(shù)的解析式;

(2)在這條拋物線的對稱軸右邊的圖象上有一點B,使AOB的面積等于6,求點B的坐標;

(3)對于(2)中的點B,在此拋物線上是否存在點P,使POB=90°?若存在,求出點P的坐標,并求出POB的面積;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案