【題目】我們把一個(gè)半圓與拋物線的一部分合成的封閉圖形稱為“蛋圓”,如果一條直線與“蛋圓”只有一個(gè)交點(diǎn),那么這條直線叫做“蛋圓”的切線.如圖所示,點(diǎn)AB、C、D分別是“蛋圓”與坐標(biāo)軸的交點(diǎn),已知點(diǎn)D的坐標(biāo)為(0,-3),AB為半圓的直徑,半圓圓心M的坐標(biāo)為(10),半圓半徑為2

1)請(qǐng)你求出“蛋圓”拋物線部分的解析式,并寫出自變量的取值范圍;

2)你能求出經(jīng)過點(diǎn)C的“蛋圓”切線的解析式嗎?試試看;

3)開動(dòng)腦筋想一想,相信你能求出經(jīng)過點(diǎn)D的“蛋圓”切線的解析式.

【答案】1,;(2;(3.

【解析】

1)易知點(diǎn),設(shè)解析式為兩點(diǎn)式即,將點(diǎn)D坐標(biāo)代入求解即可;

2)設(shè)經(jīng)過點(diǎn)C的“蛋圓”切線CE交x軸于點(diǎn)E,連接CM,在中,由勾股定理可知OC長(zhǎng),易知點(diǎn)C坐標(biāo),解直角三角形可得,在中,解直角三角形可得EM長(zhǎng),易知點(diǎn)E坐標(biāo),設(shè)直線CE的解析式為,將點(diǎn)坐代入求解即可;

3)設(shè)過點(diǎn)的“蛋圓”切線的解析式為,由題意可知方程有兩個(gè)相等的實(shí)數(shù)根,利用可得m.

解:(1)由AB為半圓的直徑,半圓圓心M的坐標(biāo)為(1,0),半圓半徑為2可知,

設(shè)“蛋圓”拋物線部分的解析式為

將點(diǎn)代入

解得,

所以“蛋圓”拋物線部分的解析式為,自變量的取值范圍為

(2)設(shè)經(jīng)過點(diǎn)C的“蛋圓”切線CE交x軸于點(diǎn)E,連接CM,

中,,根據(jù)勾股定理得,即,

中,

設(shè)直線CE的解析式為

將點(diǎn),代入得

解得

所以經(jīng)過點(diǎn)C的“蛋圓”切線的解析式;

3)設(shè)過點(diǎn)蛋圓切線的解析式為,

由題意可知方程組只有一組解,

有兩個(gè)相等的實(shí)數(shù)根,

化簡(jiǎn)得

解得(舍去)

所以經(jīng)過點(diǎn)D蛋圓切線的解析式為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)ykx+bk≠0)的圖象與反比例函數(shù)的圖象交于二、四象限內(nèi)的A、B兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)A的坐標(biāo)為(﹣2,3),點(diǎn)B的坐標(biāo)為(4,n).

1)求該反比例函數(shù)和一次函數(shù)的解析式;

2)在x軸上是否存在點(diǎn)P,使△APC是直角三角形?若存,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)E在拋物線上,點(diǎn)Fx軸上,四邊形OCEF為矩形,且OF2EF3,點(diǎn)D為直線AE上方拋物線上的一點(diǎn)

1)求拋物線所對(duì)應(yīng)的函數(shù)解析式;

2)求△ADE面積的最大值和此時(shí)點(diǎn)D的坐標(biāo);

3)將△AOC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,點(diǎn)A對(duì)應(yīng)點(diǎn)為點(diǎn)G,問點(diǎn)G是否在該拋物線上?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將△ABC繞點(diǎn)C旋轉(zhuǎn)180°得到△FEC

1)試猜想AEBF有何關(guān)系?說明理由.

2)若△ABC的面積為3cm2,求四邊形ABFE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計(jì)劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共50件,已知生產(chǎn)一件A種產(chǎn)品用甲種原料9千克,乙種原料3千克,可獲利700元;生產(chǎn)一件B種產(chǎn)品用甲種原料4千克,乙種原料10千克,可獲利1200元.

(1)按要求安排A、B兩種產(chǎn)品的生產(chǎn)件數(shù),有哪幾種方案?請(qǐng)你設(shè)計(jì)出來;

(2)設(shè)生產(chǎn)A、B兩種產(chǎn)品總利潤(rùn)為y元,其中一種產(chǎn)品生產(chǎn)件數(shù)為x件,試寫出y與x之間的函數(shù)關(guān)系式,并利用函數(shù)的性質(zhì)說明那種方案獲利最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑, BC交⊙O于點(diǎn)DE的中點(diǎn),連接AEBC于點(diǎn)F,∠ACB =2EAB

1)求證:AC是⊙O的切線;

2)若,,求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解全校學(xué)生上學(xué)的交通方式,該校九年級(jí)(8)班的4名同學(xué)聯(lián)合設(shè)計(jì)了一份調(diào)查問卷,對(duì)該校部分學(xué)生進(jìn)行了隨機(jī)調(diào)查.按A(騎自行車)、B(乘公交車)、C(步行)、D(乘私家車)、E(其他方式) 設(shè)置選項(xiàng),要求被調(diào)查同學(xué)從中單選.并將調(diào)查結(jié)果繪制成條形統(tǒng)計(jì)圖1和扇形統(tǒng)計(jì)圖2,根據(jù)以上信息, 解答下列問題:

1)本次接受調(diào)查的總?cè)藬?shù)是 人, 并把條形統(tǒng)計(jì)圖補(bǔ)充完整;

2)在扇形統(tǒng)計(jì)圖中,步行的人數(shù)所占的百分比是 ,其他方式所在扇形的圓心角度數(shù)是 ;

3)已知這4名同學(xué)中有2名女同學(xué),要從中選兩名同學(xué)匯報(bào)調(diào)查結(jié)果.請(qǐng)你用列表法或畫樹狀圖的方法, 求出恰好選出1名男生和1名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a≠0,在同一直角坐標(biāo)系中,函數(shù)y=axy=ax2的圖象有可能是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠B90°,BCAB,在BC邊上取點(diǎn)D,使ABBD,構(gòu)造正方形ABDE,DEAC于點(diǎn)F,作EGACAC于點(diǎn)G,交BC于點(diǎn)H

1)求證:EFDH;

2)若AB6DH2DF,求AC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案