【題目】我們把一個(gè)半圓與拋物線的一部分合成的封閉圖形稱為“蛋圓”,如果一條直線與“蛋圓”只有一個(gè)交點(diǎn),那么這條直線叫做“蛋圓”的切線.如圖所示,點(diǎn)A、B、C、D分別是“蛋圓”與坐標(biāo)軸的交點(diǎn),已知點(diǎn)D的坐標(biāo)為(0,-3),AB為半圓的直徑,半圓圓心M的坐標(biāo)為(1,0),半圓半徑為2.
(1)請(qǐng)你求出“蛋圓”拋物線部分的解析式,并寫出自變量的取值范圍;
(2)你能求出經(jīng)過點(diǎn)C的“蛋圓”切線的解析式嗎?試試看;
(3)開動(dòng)腦筋想一想,相信你能求出經(jīng)過點(diǎn)D的“蛋圓”切線的解析式.
【答案】(1),;(2);(3).
【解析】
(1)易知點(diǎn),設(shè)解析式為兩點(diǎn)式即,將點(diǎn)D坐標(biāo)代入求解即可;
(2)設(shè)經(jīng)過點(diǎn)C的“蛋圓”切線CE交x軸于點(diǎn)E,連接CM,在中,由勾股定理可知OC長(zhǎng),易知點(diǎn)C坐標(biāo),解直角三角形可得,在中,解直角三角形可得EM長(zhǎng),易知點(diǎn)E坐標(biāo),設(shè)直線CE的解析式為,將點(diǎn),坐代入求解即可;
(3)設(shè)過點(diǎn)的“蛋圓”切線的解析式為,由題意可知方程有兩個(gè)相等的實(shí)數(shù)根,利用可得m值.
解:(1)由AB為半圓的直徑,半圓圓心M的坐標(biāo)為(1,0),半圓半徑為2可知,
設(shè)“蛋圓”拋物線部分的解析式為,
將點(diǎn)代入得,
解得,
所以“蛋圓”拋物線部分的解析式為,自變量的取值范圍為;
(2)設(shè)經(jīng)過點(diǎn)C的“蛋圓”切線CE交x軸于點(diǎn)E,連接CM,
在中,,根據(jù)勾股定理得,即,
在中,
設(shè)直線CE的解析式為,
將點(diǎn),代入得
解得
所以經(jīng)過點(diǎn)C的“蛋圓”切線的解析式;
(3)設(shè)過點(diǎn)的“蛋圓”切線的解析式為,
由題意可知方程組只有一組解,
即有兩個(gè)相等的實(shí)數(shù)根,
化簡(jiǎn)得
解得或(舍去)
所以經(jīng)過點(diǎn)D的“蛋圓”切線的解析式為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)的圖象交于二、四象限內(nèi)的A、B兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)A的坐標(biāo)為(﹣2,3),點(diǎn)B的坐標(biāo)為(4,n).
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)在x軸上是否存在點(diǎn)P,使△APC是直角三角形?若存,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)E在拋物線上,點(diǎn)F在x軸上,四邊形OCEF為矩形,且OF=2,EF=3,點(diǎn)D為直線AE上方拋物線上的一點(diǎn)
(1)求拋物線所對(duì)應(yīng)的函數(shù)解析式;
(2)求△ADE面積的最大值和此時(shí)點(diǎn)D的坐標(biāo);
(3)將△AOC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,點(diǎn)A對(duì)應(yīng)點(diǎn)為點(diǎn)G,問點(diǎn)G是否在該拋物線上?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將△ABC繞點(diǎn)C旋轉(zhuǎn)180°得到△FEC.
(1)試猜想AE與BF有何關(guān)系?說明理由.
(2)若△ABC的面積為3cm2,求四邊形ABFE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠現(xiàn)有甲種原料360千克,乙種原料290千克,計(jì)劃利用這兩種原料生產(chǎn)A、B兩種產(chǎn)品共50件,已知生產(chǎn)一件A種產(chǎn)品用甲種原料9千克,乙種原料3千克,可獲利700元;生產(chǎn)一件B種產(chǎn)品用甲種原料4千克,乙種原料10千克,可獲利1200元.
(1)按要求安排A、B兩種產(chǎn)品的生產(chǎn)件數(shù),有哪幾種方案?請(qǐng)你設(shè)計(jì)出來;
(2)設(shè)生產(chǎn)A、B兩種產(chǎn)品總利潤(rùn)為y元,其中一種產(chǎn)品生產(chǎn)件數(shù)為x件,試寫出y與x之間的函數(shù)關(guān)系式,并利用函數(shù)的性質(zhì)說明那種方案獲利最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑, BC交⊙O于點(diǎn)D,E是的中點(diǎn),連接AE交BC于點(diǎn)F,∠ACB =2∠EAB.
(1)求證:AC是⊙O的切線;
(2)若,,求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解全校學(xué)生上學(xué)的交通方式,該校九年級(jí)(8)班的4名同學(xué)聯(lián)合設(shè)計(jì)了一份調(diào)查問卷,對(duì)該校部分學(xué)生進(jìn)行了隨機(jī)調(diào)查.按A(騎自行車)、B(乘公交車)、C(步行)、D(乘私家車)、E(其他方式) 設(shè)置選項(xiàng),要求被調(diào)查同學(xué)從中單選.并將調(diào)查結(jié)果繪制成條形統(tǒng)計(jì)圖1和扇形統(tǒng)計(jì)圖2,根據(jù)以上信息, 解答下列問題:
(1)本次接受調(diào)查的總?cè)藬?shù)是 人, 并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)在扇形統(tǒng)計(jì)圖中,“步行”的人數(shù)所占的百分比是 ,“其他方式”所在扇形的圓心角度數(shù)是 ;
(3)已知這4名同學(xué)中有2名女同學(xué),要從中選兩名同學(xué)匯報(bào)調(diào)查結(jié)果.請(qǐng)你用列表法或畫樹狀圖的方法, 求出恰好選出1名男生和1名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a≠0,在同一直角坐標(biāo)系中,函數(shù)y=ax與y=ax2的圖象有可能是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,BC>AB,在BC邊上取點(diǎn)D,使AB=BD,構(gòu)造正方形ABDE,DE交AC于點(diǎn)F,作EG⊥AC交AC于點(diǎn)G,交BC于點(diǎn)H.
(1)求證:EF=DH;
(2)若AB=6,DH=2DF,求AC的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com